Меню
Бесплатно
Главная  /  Красота  /  Квантовая механика подсказала возможное доказательство гипотезы римана

Квантовая механика подсказала возможное доказательство гипотезы римана

Российский математик нашел доказательство Гипотезы Римана January 3rd, 2017


Бернхард Риман

Помните, я вам рассказывал про . Так вот, среди них была гипотеза Римана.

В 1859 году немецкий математик Бернхард Риман взял давнюю идею Эйлера и развил ее совершенно по-новому, определив так называемую дзета-функцию. Одним из результатов этой работы стала точная формула для количества простых чисел до заданного предела. Формула представляла собой бесконечную сумму, но специалистам по анализу к этому не привыкать. И это не было бесполезной игрой ума: благодаря этой формуле удалось получить новые подлинные знания о мире простых чисел. Мешала только одна маленькая неувязка. Хотя Риман мог доказать, что его формула точна, самые важные потенциальные следствия из нее полностью зависели от одного простого утверждения, касающегося дзета-функции, и вот это то простое утверждение Риман никак не мог доказать. Полтора столетия спустя, мы все еще не сумели сделать это.

Сегодня это утверждение называется гипотезой Римана и представляет собой, по сути, священный Грааль чистой математики, который похоже "нашел" российский математик .

Это может значить то, что мировая математическая наука находится на пороге события международного масштаба.

Доказательство или опровержение гипотезы Римана будет иметь далеко идущие последствия для теории чисел, особенно, в области распределения простых чисел. А это может повлиять на совершенствование информационных технологий.

Гипотеза Римана входит в список семи «проблем тысячелетия», за решение каждой из которых Математический институт Клэя (Clay Mathematics Institute, Кембридж, Массачусетс) выплатит награду в один миллион долларов США.

Таким образом, доказательство гипотезы может обогатить российского математика.

Согласно неписаным законам международного научного мира, успех Игоря Турканов полностью признают не раньше, чем через несколько лет. Тем не менее, его работа уже была представлена на Международной физико-математической конференции под эгидой Института прикладной математики им. Келдыша РАН в сентябре 2016 года.

Также отметим, что если найденное Игорем Туркановым доказательство Гипотезы Римана будет признано верным, то на счет российских математиков будет записано решение уже двух из семи «проблем тысячелетия». Одну из этих проблем - «гипотезу Пуанкаре» в 2002 году . При этом он отказался от полагавшейся ему премии в $1 млн от института Клэя.

В 2015 году Профессор математики Опиеми Энох (Opeyemi Enoch) из Нигерии заявил о том, что он смог решить гипотезу Римана, но в Математическом институте Клэя пдо сегодняшнего момента считали гипотезу Римана недоказанной. По словам представителей института, для того, чтобы достижение было зафиксировано, его необходимо опубликовать в авторитетном международном журнале, с последующим подтверждением доказательства научным сообществом.

источники

Гипотеза Римана является одной из семи «проблем тысячелетия», за её доказательство Институт математики Клея (Clay Mathematics Institute, Кембридж, Массачусетс) выплатит приз в 1 млн. долларов. К рассмотрению принимаются решения, которые были опубликованы в известном математическом журнале, причём не ранее, чем через 2 года после публикации (для всестороннего рассмотрения математическим сообществом)(http://www.claymath.org/millennium/).
Я имел свои соображения и подходы, как всегда, сильно отличающиеся от известных. Мне хотелось написать художественно о гипотезе Римана. В процессе своих выкладок и сбора материала я обнаружил прекрасно написанную книгу Джона Дербишира: Джон ДЕРБИШИР «Простая одержимость.Бернхард Риман и величайшая нерешенная проблема в математике»(John Derbyshire. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics). Издательство «Астрель», 2010 г.
После прочтения этой книги мне оставалось дать только эту ссылку.
«В августе 1859 года Бернхард Риман стал членом-корреспондентом Берлинской академии наук; это была большая честь для тридцатидвухлетнего математика. В согласии с традицией Риман по такому случаю представил академии работу по теме исследований, которыми он был в то время занят. Она называлась «О числе простых чисел, не превышающих данной величины». В ней Риман исследовал простой вопрос из области обычной арифметики. Чтобы понять этот вопрос, сначала выясним, сколько имеется простых чисел, не превышающих 20. Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих тысячи? Миллиона? Миллиарда? Существует ли общий закон или общая формула, которые избавили бы нас от прямого пересчета?
Риман взялся за эту проблему, используя самый развитый математический аппарат своего времени - средства, которые даже сегодня изучаются только в продвинутых институтских курсах; кроме того, он для своих нужд изобрел математический объект, сочетающий в себе мощь и изящество одновременно. В конце первой трети своей статьи он высказывает некоторую догадку относительно этого объекта, а далее замечает:
«Хотелось бы, конечно, иметь строгое доказательство этого факта, но после нескольких недолгих бесплодных попыток я отложил поиск такого доказательства, поскольку этого не требуется для непосредственных целей моего исследования».
Эта высказанная по случаю догадка оставалась почти незамеченной в течение десятилетий. Но затем, по причинам, которые я поставил себе целью описать в данной книге, она постепенно завладела воображением математиков, пока не достигла статуса одержимости, непреодолимой навязчивой идеи.
Гипотеза Римана, как стали называть эту догадку, оставалась навязчивой идеей в течение всего XX столетия и остается таковой по сей день, отразив к настоящему моменту все без исключения попытки доказать ее или опровергнуть. Эта одержимость Гипотезой Римана стала сильна как никогда после того, как в последние годы были успешно решены другие великие проблемы, долгое время остававшиеся открытыми: Теорема о четырех красках (сформулирована в 1852 году, решена в 1976), Последняя теорема Ферма (сформулирована, по-видимому, в 1637 году, доказана в 1994), а также многие другие, менее известные за пределами мира профессиональных математиков. Гипотеза Римана поглощала внимание математиков в течение всего XX века. Вот что говорил Давид Гильберт, один из виднейших математических умов своего времени, обращаясь ко второму международному конгрессу математиков:«В теории распределения простых чисел в последнее время Адамаром, де ля Валле Пуссеном, фон Мангольдтом и другими сделаны существенные сдвиги. Но для полного решения проблемы, поставленной в исследовании Римана «О числе простых чисел, не превышающих данной величины», необходимо прежде всего доказать справедливость исключительно важного утверждения Римана <...>».
Далее Гильберт приводит формулировку Гипотезы Римана. А вот как сто лет спустя высказался Филип А. Гриффитс, директор Института высших исследований в Принстоне, а ранее - профессор математики в Гарвардском университете. В своей статье, озаглавленной «Вызовы исследователям XXI века», в январском номере Journal of the American Mathematical Society за 2000 год он пишет:
«Несмотря на колоссальные достижения XX века, десятки выдающихся проблем все еще ожидают своего решения. Наверное, большинство из нас согласится, что следующие три проблемы относятся к числу наиболее вызывающих и интересных.
Первой из них является Гипотеза Римана, которая дразнит математиков уже 150 лет <...>».
Интересным явлением в Соединенных Штатах в последние годы XX века стало появление частных математических исследовательских институтов, финансируемых богатыми любителями математики. И Математический институт Клея (основанный в 1998 году бостонским финансистом Лэндоном Т. Клеем), и Американский математический институт (основан в 1994 году калифорнийским предпринимателем Джоном Фраем) ориентировали свои исследования на Гипотезу Римана. Институт Клея установил премию в миллион долларов за ее доказательство или опровержение. Американский математический институт обращался к Гипотезе на трех полномасштабных конференциях (в 1996, 1998 и 2000 годах), собравших исследователей со всего мира. Помогут ли эти новые подходы и инициативы в конце концов победить Гипотезу Римана, пока не ясно.
В отличие от Теоремы о четырех красках или Последней теоремы Ферма Гипотезу Римана нелегко сформулировать так, чтобы сделать ее понятной для нематематика, потому что она составляет самую суть одной трудной для понимания математической теории. Вот как она звучит:
Гипотеза Римана.
Все нетривиальные нули дзета-функции
имеют вещественную часть, равную одной второй».
Когда соприкасаешься с трудами вокруг гипотезы Римана, приходит мистическая идея не только об эволюции идей и мышления, не только о закономерностях развитии математики, не только об устройстве самого плана развёртывания вселенной, но и об изначальном знании, абсолютной истине, логосе как программе Единого.
Математические абстракции правят миром, управляют поведением элементарных частиц, высоких энергий, математические операторы порождают и уничтожают всё что угодно. После ряда веков доминирования материального, поклонения материальному, снова стала проявляться сила мирового духа в виде математических абстракций, пифагореизм, платонизм стали методологическими ориентирами современной науки.
Я с детства находил ошибки в трудах великих математиков. Не из зависти или вредности, а просто было интересно, могу ли я превзойти Пифагора,Диофанта, Евклида,Ферма, Мерсенна, Декарта, Гаусса, Эйлера, Лежандра,Римана,Дирихле, Дедекинда, Кляйна, Пуанкаре. И как ни странно, превосходил. Формулировал новые проблемы, доказывал новые теоремы. Но оказалось, что математический мир устроен, несмотря на требования точности и доказательности, как-то бюрократически. Оказалось, что твоим доказательствам просто не верят. Вопреки логике и объективности. А верят сказкам прессы, радио и телевидения. При этом средства массовой информации так сильно искажают действительное положение дел, что с удивлением узнаёшь, как переделаны твои фразы. Поэтому я стал избегать интервью.
Хочу заметить наличие множества ошибок вокруг гипотезы и дзета-функции Римана, а также в попытках доказать или опровергнуть гипотезу. Риман не придал большого значения поиску нулей дзета-функции. Но хор "выдающихся" последователей невероятно раздул значение гипотезы. Я показываю даже элементарными выкладками, что гипотеза неверна, что есть другие решения. Во-первых, дзета-функция не обладает той симметрией, о которой твердят, - симметрию решений имеет совсем другая функция. Во-вторых, если не лениться и уметь вычислять корни уравнений для функций с комплексными переменными, можно увидеть, что дело обстоит на самом деле несколько иначе. Хотите убедиться? Прочтите внимательно формулы на приложенном рисунке. Более подробно исчерпывающие примеры и вычисления можно найти в заметке "The Riemann"s Hypothesis Refutation Formulae" Можете добавить свои обобщения (особенно самой функции) и соответствующие вычисления. "А ларчик просто открывался!"
Успехов Вам!

5 декабря 2014 в 18:54

Задачи тысячелетия. Просто о сложном

  • Занимательные задачки ,
  • Математика

Привет, хабралюди!

Сегодня я бы хотел затронуть такую тему как «задачи тысячелетия», которые вот уже десятки, а некоторые и сотни лет волнуют лучшие умы нашей планеты.

После доказательства гипотезы (теперь уже теоремы) Пуанкаре Григорием Перельманом, основным вопросом, который заинтересовал многих, был: «А что же он собственно доказал, объясните на пальцах? » Пользуясь возможностью, попробую объяснить на пальцах и остальные задачи тысячелетия, или по крайней мере подойти в ним с другой более близкой к реальности стороны.

Равенство классов P и NP

Все мы помним из школы квадратные уравнения, которые решаются через дискриминант. Решение этой задачи относится к классу P (P olynomial time) - для нее существует быстрый (здесь и далее под словом «быстрый» подразумевается как выполняющийся за полиномиальное время) алгоритм решения, который и заучивается.

Также существуют NP -задачи (N on-deterministic P olynomial time) , найденное решение которых можно быстро проверить по определенному алгоритму. Для примера проверка методом перебора компьютером. Если вернуться к решению квадратного уравнения, то мы увидим, что в данном примере существующий алгоритм решения проверяется так же легко и быстро как и решается. Из этого напрашивается логичный вывод, что данная задача относится как к одному классу так и ко второму.

Таких задач много, но основным вопросом является, все или не все задачи которые можно легко и быстро проверить можно также легко и быстро решить? Сейчас для некоторых задач не найдено быстрого алгоритма решения, и неизвестно существует ли такой вообще.

На просторах интернета также встретил такую интересную и прозрачную формулировку:

Допустим, что вы, находясь в большой компании, хотите убедиться, что там же находится ваш знакомый. Если вам скажут, что он сидит в углу, то достаточно будет доли секунды, чтобы, бросив взгляд, убедиться в истинности информации. В отсутствие этой информации вы будете вынуждены обойти всю комнату, рассматривая гостей.

В данном случае вопрос стоит все тот же, есть ли такой алгоритм действий, благодаря которому даже не имея информации о том, где находится человек, найти его так же быстро, как будто зная где он находится.

Данная проблема имеет большое значение для самых различных областей знаний, но решить ее не могут уже более 40 лет.

Гипотеза Ходжа

В реальности существуют множество как простых так и куда более сложных геометрических объектов. Очевидно, что чем сложнее объект тем более трудоемким становится его изучение. Сейчас учеными придуман и вовсю применяется подход, основная идея которого заключается в том, чтобы вместо самого изучаемого объекта использовать простые «кирпичики» с уже известными свойствами, которые склеиваются между собой и образуют его подобие, да-да, знакомый всем с детства конструктор. Зная свойства «кирпичиков», становится возможным подступиться и к свойствам самого объекта.

Гипотеза Ходжа в данном случае связана с некоторыми свойствами как «кирпичиков» так и объектов.

Гипотеза Римана

Всем нам еще со школы известны простые числа которые делятся только на себя и на единицу (2,3,5,7,11...) . С давних времен люди пытаются найти закономерность в их размещении, но удача до сих пор так никому и не улыбнулась. В результате ученые применили свои усилия к функции распределения простых чисел, которая показывает количество простых чисел меньше или равных определенного числа. Например для 4 - 2 простых числа, для 10 - уже 4 числа. Гипотеза Римана как раз устанавливает свойства данной функции распределения.

Многие утверждения о вычислительной сложности некоторых целочисленных алгоритмов, доказаны в предположении верности этой гипотезы.

Теория Янга - Миллса

Уравнения квантовой физики описывают мир элементарных частиц. Физики Янг и Миллс, обнаружив связь между геометрией и физикой элементарных частиц, написали свои уравнения, объединяющие теории электромагнитного, слабого и сильного взаимодействий. Одно время теория Янга-Миллса рассматривалась лишь как математический изыск, не имеющий отношения к реальности. Однако, позже теория начала получать экспериментальные подтверждения, но в общем виде она все еще остается не решенной.

На основе теории Янга-Миллса построена стандартная модель физики элементарных частиц в рамках которой был предсказан и не так давно обнаружен нашумевший бозон Хиггса.

Существование и гладкость решений уравнений Навье - Стокса

Течение жидкостей, воздушные потоки, турбулентность. Эти, а также множество других явлений описываются уравнениями, известными как уравнения Навье - Стокса . Для некоторых частных случаев уже найдены решения, в которых как правило части уравнений отбрасываются как не влияющие на конечный результат, но в общем виде решения этих уравнений неизвестны, и при этом даже неизвестно, как их решать.

Гипотеза Бёрча - Свиннертон-Дайера

Для уравнения x 2 + y 2 = z 2 в свое время еще Эвклид дал полное описание решений, но для более сложных уравнений поиск решений становится чрезвычайно трудным, достаточно вспомнить историю доказательства знаменитой теоремы Ферма, чтобы убедиться в этом.

Данная гипотеза связана с описанием алгебраических уравнений 3 степени - так называемых эллиптических кривых и по сути является единственным относительно простым общим способом вычисления ранга, одного из важнейших свойств эллиптических кривых.

В доказательстве теоремы Ферма эллиптические кривые заняли одно из важнейших мест. А в криптографии они образуют целый раздел имени себя, и на них основаны некоторые российские стандарты цифровой подписи.

Гипотеза Пуанкаре

Думаю если не все, то большинство точно о ней слышали. Чаще всего встречается, в том числе и на центральных СМИ, такая расшифровка как «резиновую ленту натянутую на сферу можно плавно стянуть в точку, а натянутую на бублик - нельзя ». На самом деле эта формулировка справедлива для гипотезы Тёрстона, которая обобщает гипотезу Пуанкаре, и которую в действительности и доказал Перельман.

Частный случай гипотезы Пуанкаре говорит нам о том, что любое трехмерное многообразие без края (вселенная, например) подобно трехмерной сфере. А общий случай переводит это утверждение на объекты любой мерности. Стоит заметить, что бублик, точно так же как вселенная подобна сфере, подобен обычной кофейной кружке.

Заключение

В настоящее время математика ассоциируется с учеными, имеющими странный вид и говорящие о не менее странных вещах. Многие говорят о ее оторванности от реального мира. Многие люди как младшего, так и вполне сознательного возраста говорят, что математика ненужная наука, что после школы/института, она нигде не пригодилась в жизни.

Но на самом деле это не так - математика создавалась как механизм с помощью которого можно описать наш мир, и в частности многие наблюдаемые вещи. Она повсюду, в каждом доме. Как сказал В.О. Ключевский: «Не цветы виноваты, что слепой их не видит».

Наш мир далеко не так прост, как кажется, и математика в соответствии с этим тоже усложняется, совершенствуется, предоставляя все более твердую почву для более глубокого понимания существующей реальности.

Ответ редакции

Профессор Оксфордского, Кембриджского и Эдинбургского университетов, а также лауреат почти десятка престижных премий в области математики Майкл Фрэнсис Атья представил доказательство гипотезы Римана , одной из семи «проблем тысячелетия», которая описывает, как расположены на числовой прямой простые числа.

Доказательство Атьи небольшое, вместе с введением и списком литературы оно занимает пять страниц. Ученый утверждает, что нашел решение гипотезы, анализируя проблемы, связанные с постоянной тонкой структуры, а в качестве инструмента использовал функцию Тодда. Если научное сообщество сочтет доказательство корректным, то за него британец получит $1 млн от Института математики Клея (Clay Mathematics Institute, Кембридж, Массачусетс).

На приз претендуют также другие ученые. В 2015 году о решении гипотезы Римана заявлял профессор математики Опиеми Энох (Opeyemi Enoch) из Нигерии, а в 2016 году свое доказательство гипотезы представил российский математик Игорь Турканов . По словам представителей Института математики, для того чтобы достижение было зафиксировано, его необходимо опубликовать в авторитетном международном журнале с последующим подтверждением доказательства научным сообществом.

В чем суть гипотезы?

Гипотезу еще в 1859 году сформулировал немецкий математик Бернхард Риман . Он определил формулу, так называемую дзета-функцию, для количества простых чисел до заданного предела. Ученый выяснил, что нет никакой закономерности, которая бы описывала, как часто в числовом ряду появляются простые числа, при этом он обнаружил, что количество простых чисел, не превосходящих x , выражается через распределение так называемых «нетривиальных нулей» дзета-функции.

Риман был уверен в правильности выведенной формулы, однако он не мог установить, от какого простого утверждения полностью зависит это распределение. В результате он выдвинул гипотезу, которая заключается в том, что все нетривиальные нули дзета-функции имеют действительную часть, равную ½, и лежат на вертикальной линии Re=0,5 комплексной плоскости.

Доказательство или опровержение гипотезы Римана очень важно для теории распределения простых чисел, говорит аспирант факультета математики Высшей школы экономики Александр Калмынин . «Гипотеза Римана — это утверждение, которое эквивалентно некоторой формуле для количества простых чисел, не превосходящих данное число x . Гипотеза, например, позволяет достаточно быстро и с большой точностью посчитать количество простых чисел, не превосходящих, к примеру, 10 млрд. Это не единственная ценность гипотезы, потому что у нее есть еще целый ряд довольно далеко идущих обобщений, которые известны как обобщенная гипотеза Римана, расширенная гипотеза Римана и большая гипотеза Римана. Они имеют еще большее значение для разных разделов математики, но в первую очередь важность гипотезы определяется теорией простых чисел», — говорит Калмынин.

По словам эксперта, при помощи гипотезы можно решать ряд классических задач теории чисел: задачи Гаусса о квадратичных полях (проблема десятого дискриминанта), задачи Эйлера об удобных числах, гипотезу Виноградова о квадратичных невычетах и т. д. В современной математике данной гипотезой пользуются для доказательства утверждений о простых числах. «Мы сразу предполагаем, что верна какая-то сильная гипотеза типа гипотезы Римана, и смотрим, что получается. Когда у нас это получается, то мы задаемся вопросом: можем ли мы это доказать без предположения гипотезы? И, хотя такое утверждение пока за пределами того, чего мы можем достигнуть, оно работает как маяк. За счет того, что есть такая гипотеза, мы можем смотреть, куда нам двигаться», — говорит Калмынин.

Доказательство гипотезы также может повлиять на совершенствование информационных технологий, поскольку процессы шифрования и кодирования сегодня зависят от эффективности разных алгоритмов. «Если мы возьмем два простых больших числа по сорок знаков и перемножим, то у нас получится большое восьмидесятизначное число. Если поставить задачу разложить это число на множители, то это будет очень сложная вычислительная задача, на основе которой как раз построены многие вопросы информационной безопасности. Все они заключаются в создании разных алгоритмов, которые завязаны на сложностях подобного рода», — говорит Калмынин.

8 августа 1900 года на 2-м Международном конгрессе математиков в Париже один из величайших математиков современности Давид Гильберт сформулировал двадцать три задачи, которые во многом предопределили развитие математики XX столетия. В 2000 году специалисты из Clay Mathematics Institute решили, что грешно входить в новое тысячелетие, не наметив новую программу развития, -тем более что от двадцати трех проблем Гильберта остались лишь две[Еще две считаются слишком расплывчатыми или нематематическими, еще одна была решена частично, а по поводу еще одной - знаменитой континуум-гипотезы - консенсус пока не достигнут ()].

В результате появился знаменитый список из семи задач, за полное решение любой из которых обещан миллион долларов из специально учрежденного фонда. Чтобы получить деньги, нужно опубликовать решение и подождать два года; если в течение двух лет никто его не опровергнет (будьте уверены - попытаются), вы получите миллион вожделенных зеленых бумажек.
Я попытаюсь изложить суть одной из этих задач, а также постараюсь (в меру своих скромных сил) объяснить ее сложность и важность. Настойчиво рекомендую зайти на официальный сайт конкурса www.claymath.org/millennium ; опубликованные там описания проблем полны и интересны, и именно они стали главным источником при написании статьи.

Гипотеза Римана

Однажды один из моих научных руководителей, выдающийся петербургский алгебраист Николай Александрович Вавилов, начал занятие своего спецкурса с формулы

1 + 2 + 3 + 4 + 5 + … = –1/12.

Нет, занятие не было посвящено гипотезе Римана, и узнал я о ней вовсе не от Николая Александровича. Но формула, тем не менее, имеет к гипотезе самое прямое отношение. И что удивительно - это кажущееся абсурдным равенство действительно верно. Точнее сказать, не совсем оно, но дьявол деталей тоже вскоре будет удовлетворен.

В 1859 году Бернард Риман (Bernhard Riemann) опубликовал статью (или, как тогда выражались, мемуар), которой была суждена очень долгая жизнь. В ней он изложил совершенно новый метод асимптотической оценки распределения простых чисел. В основе метода лежала функция, связь которой с простыми числами обнаружил еще Леонард Эйлер, но которая все же получила имя математика, продолжившего ее на всю комплексную плоскость: так называемая дзета-функция Римана. Определяется она очень просто:

ς (s) = 1/1 s + 1/2 s + 1/3 s + 1/3 s + … .

Любой студент, прослушавший курс математического анализа, тут же скажет, что этот ряд сходится для всякого вещественного s > 1. Более того, он сходится и для комплексных чисел, вещественная часть которых больше единицы. Еще более того, функция ς (s) - аналитическая в этой полуплоскости.

Рассматривать формулу для отрицательных s кажется дурной шуткой: ну какой смысл складывать, например, все положительные целые числа или, тем более, их квадраты или кубы? Однако комплексный анализ - упрямая наука, и свойства дзета-функции таковы, что ее можно продолжить на всю плоскость. Это и было одной из идей Римана, изложенных в мемуаре 1859 года. У полученной функции только одна особая точка (полюс): s = 1, а, например, в отрицательных вещественных точках функция вполне определена. Именно значение аналитически продолженной дзета-функции в точке –1 и выражает формула, с которой я начал этот раздел.

(Специально для патриотов и неравнодушных к истории науки людей отмечу в скобках, что, хотя мемуар Бернарда Римана внес в теорию чисел много свежих идей, он не был первым исследованием, в котором распределение простых чисел изучалось аналитическими методами. Впервые это сделал наш соотечественник Пафнутий Львович Чебышёв, 24 мая 1848 года прочитавший в петербургской Академии наук доклад, в котором изложил ставшие классическими асимптотические оценки количества простых чисел.)

Но вернемся к Риману. Ему удалось показать, что распределение простых чисел - а это центральная проблема теории чисел - зависит от того, где дзета-функция обращается в нуль. У нее есть так называемые тривиальные нули - в четных отрицательных числах (–2, –4, –6, …). Задача состоит в том, чтобы описать все остальные нули дзета-функции.

Этот орешек вот уже полторы сотни лет не могут разгрызть самые талантливейшие математики планеты.

Правда, мало кто сомневается в том, что гипотеза Римана верна. Во-первых, численные эксперименты более чем убедительны; о последнем из них рассказывает статья Хавьера Гурдона (Xavier Gourdon), название которой говорит само за себя: «Первые 10 13 нулей дзета-функции Римана и вычисление нулей на очень большой высоте» (вторая часть названия означает, что предложен метод вычисления не только первых нулей, но и некоторых, пусть и не всех, более далеких, вплоть до нулей с номером около 10 24). Эта работа пока венчает более чем столетнюю историю попыток проверки гипотезы Римана для некоторого количества первых нулей. Разумеется, контрпримеров к гипотезе Римана не найдено. Кроме того, строго установлено, что больше 40% нулей дзета-функции гипотезе удовлетворяют.

Второй аргумент напоминает одно из доказательств существования Бога, опровергнутых еще Иммануилом Кантом. Если Риман все же ошибся, то неверной станет очень много красивой и правдоподобной математики, построенной в предположении, что гипотеза Римана правильна. Да, этот аргумент не имеет научного веса, но все же… математика - это наука, где красота играет ключевую роль. Красивое, но неверное доказательство сплошь и рядом оказывается полезнее, чем верное, но некрасивое. Так, например, из неудачных попыток доказать великую теорему Ферма выросло не одно направление современной алгебры. И еще одно эстетическое замечание: теорема, аналогичная гипотезе Римана, была доказана в алгебраической геометрии. Получившаяся теорема Делиня (Deligne) по праву считается одним из самых сложных, красивых и важных результатов математики XX столетия.
Итак, гипотеза Римана, по всей видимости, верна - но не доказана. Кто знает, возможно, сейчас этот журнал читает человек, которому суждено войти в историю математики, доказав гипотезу Римана. В любом случае, как и со всеми остальными великими задачами, сразу предупреждаю: не пытайтесь повторить эти трюки дома. Иными словами, не пытайтесь решать великие проблемы, не поняв теории, которая их окружает. Сэкономите нервы и себе, и окружающим.

На десерт - еще немного интересного о дзета-функции. Оказывается, у нее есть и практические применения, и даже физический смысл. Более того, и гипотеза Римана (точнее говоря, ее обобщение, считающееся столь же сложным, сколь и она сама) имеет прямые практические следствия. Например, одной из важных вычислительных задач является проверка чисел на простоту (дано число, нужно сказать, простое оно или нет). Самый теоретически быстрый на данный момент алгоритм решения этой задачи - тест Миллера-Рабина (Miller-Rabin test) - работает за время O(log 4 n), где n - данное число (соответственно log n - длина входа алгоритма). Однако доказательство того, что он работает так быстро, опирается на гипотезу Римана.

Впрочем, тест на простоту - не слишком сложная проблема с точки зрения теории сложности (в 2002 году был разработан не зависящий от гипотезы Римана алгоритм, который медленнее теста Миллера-Рабина, но тоже полиномиален). Раскладывать числа на простые сомножители гораздо интереснее (и прямые криптографические приложения налицо - стойкость схемы RSA зависит от того, можно ли быстро разложить число на простые), и здесь гипотеза Римана тоже является необходимым условием для доказательства оценок времени работы некоторых быстрых алгоритмов.

Обратимся к физике. В 1948 году голландский ученый Хендрик Казимир (Hendrik Casimir) предсказал эффект, носящий теперь его имя[Эффект Казимира долгое время оставался лишь изящной теоретической идеей; однако в 1997 году Стив Ламоро (Steve K. Lamoreaux), Умар Мохидин (Umar Mohideen) и Анушри Руа (Anushri Roy) смогли провести подтверждающие предшествующую теорию эксперименты]. Оказывается, если сблизить две незаряженные металлические пластины на расстояние в несколько атомных диаметров, они притянутся друг к другу за счет флуктуаций расположенного между ними вакуума - постоянно рождающихся пар частиц и античастиц. Этот эффект чем-то напоминает притяжение подплывших слишком близко друг к другу судов в океане (еще больше он напоминает теорию Стивена Хокинга о том, что черные дыры все же излучают энергию, - впрочем, тут трудно сказать, кто кого напоминает). Расчеты физической модели этого процесса показывают, что сила, с которой притягиваются пластины, должна быть пропорциональна сумме частот стоячих волн, возникающих между пластинами. Вы уже догадались - эта сумма сводится к сумме 1+2+3+4+…. И более того - правильным значением этой суммы для расчетов эффекта Казимира является именно –1/12.

Но и это еще не все. Некоторые исследователи считают, что дзета-функция играет важную роль… в музыке! Возможно[Я пишу «возможно», потому что единственный источник, который мне удалось разыскать, это переписка в usenet-конференции sci.math . Если вы (читатели) сможете найти более авторитетные источники, мне будет очень интересно об этом услышать], максимумы дзета-функции соответствуют значениям частот, которые могут служить хорошей основой для построения музыкальной шкалы (такой, как наш нотный стан). Что ж, Герман Гессе в своей «Игре в бисер» не зря объявил Игру комбинацией математики и музыки: между ними и впрямь много общего…