Меню
Бесплатно
Главная  /  Сценарии праздников  /  Современные достижения биотехнологий. Биотехнологии в современном мире и жизни человека. Технологии и биотехнологии

Современные достижения биотехнологий. Биотехнологии в современном мире и жизни человека. Технологии и биотехнологии

Биологические технологии (биотехнологии) обеспечивают управляемое получение полезных продуктов для различных сфер человеческой деятельности, базируясь на использовании каталитического потенциала биологических агентов и систем различной степени организации и сложности - микроорганизмов, вирусов, растительных и животных клеток и тканей, а также внеклеточных веществ и компонентов клеток.

Развитие и преобразование биотехнологии обусловлено глубокими переменами, происшедшими в биологии в течение последних 25-30 лет. Основу этих событий составили новые представления в области молекулярной биологии и молекулярной генетики. В то же время нельзя не отметить, что развитие и достижения биотехнологии теснейшим образом связаны с комплексом знаний не только наук биологического профиля, но также и многих других.

Расширение практической сферы биотехнологии обусловлено также социально-экономическими потребностями общества. Такие актуальные проблемы, стоящие перед человечеством на пороге ХХ1 в., как дефицит чистой воды и пищевых веществ (особенно белковых), загрязнение окружающей среды, недостаток сырьевых и энергетических ресурсов, необходимость получения новых, экологически чистых материалов, развития новых средств диагностики и лечения, не могут быть решены традиционными методами. Поэтому для жизнеобеспечения человека, повышения качества жизни и ее продолжительности становится все более необходимым освоение принципиально новых методов и технологий.

Развитие научно-технического прогресса, сопровождающееся повышением темпов материальных и энергетических ресурсов, к сожалению, приводит к нарушению баланса в биосферных процессах. Загрязняются водные и воздушные бассейны городов, сокращается воспроизводительная функция биосферы, вследствие накопления тупиковых продуктов техносферы нарушаются глобальные круговоротные циклы биосферы.

Стремительность темпов современного научно-технического прогресса человечества образно описал швейцарский инженер и философ Эйхельберг: «Полагают, что возраст человечества равен 600 000 лет. Представим себе движение человечества в виде марафонского бега на 60 км, который где-то начинаясь, идет по направлению к центру одного из наших городов, как к финишу... Большая часть дистанции пролегает по весьма трудному пути -через девственные леса, и мы об этом ничего не знаем, ибо только в самом конце, на 58-59 км бега, мы находим, наряду с первобытным орудием, пещерные рисунки, как первые признаки культуры, и только на последнем километре появляются признаки земледелия.

За 200 м до финиша дорога, покрытая каменными плитами, ведет мимо римских укреплений. За 100 м бегунов обступают средневековые городские строения. До финиша остается 50 м, где стоит человек, умными и понимающими глазами следящий за бегунами, -это Леонардо да Винчи. Осталось 10 м. Они начинаются при свете факелов и скудном освещении масляных ламп. Но при броске на последних 5 м происходит ошеломляющее чудо: свет заливает ночную дорогу, повозки без тяглового скота мчатся мимо, машины шумят в воздухе, и пораженный бегун ослеплен светом прожекторов фото- и телекамер...», т.е. за 1 м человеческий гений совершает ошеломляющий рывок в области научно-технического прогресса. Продолжая этот образ, можно добавить, что в момент приближения бегуна к финишной ленточке оказывается прирученным термоядерный синтез, стартуют космические корабли, расшифрован генетически код.

Биотехнология - основа научно-технического прогресса и повышения качества жизни человека

Биотехнология как область знаний и динамически развиваемая промышленная отрасль призвана решить многие ключевые проблемы современности, обеспечивая при этом сохранение баланса в системе взаимоотношений «человек - природа - общество», ибо биологические технологии (биотехнологии), базирующиеся на использовании потенциала живого по определению нацелены на дружественность и гармонию человека с окружающим его миром. В настоящее время биотехнология подразделяется на несколько наиболее значимых сегментов: это «белая», «зеленая», «красная», «серая» и «синяя» биотехнология.

К «белой» биотехнологии относят промышленную биотехнологию, ориентированную на производство продуктов, ранее производимых химической промышленностью, - спирта, витаминов, аминокислот и др. (с учетом требований сохранения ресурсов и охраны окружающей среды).

Зеленая биотехнология охватывает область, значимую для сельского хозяйства. Это исследования и технологии, направленные на создание биотехнологических методов и препаратов для борьбы с вредителями и возбудителями болезней культурных растений и домашних животных, создание биоудобрений, повышение продуктивности растений, в том числе с использованием методов генетической инженерии.

Красная (медицинская) биотехнология - наиболее значимая область современной биотехнологии. Это производство биотехнологическими методами диагностикумов и лекарственных препаратов с использованием технологий клеточной и генетической инженерии (зеленые вакцины, генные диагностикумы, моноклональные антитела, конструкции и продукты тканевой инженерии и др.).

Серая биотехнология занимается разработкой технологий и препаратов для защиты окружающей среды; это рекультивация почв, очистка стоков и газовоздушных выбросов, утилизация промышленных отходов и деградация токсикантов с использованием биологических агентов и биологических процессов.

Синяя биотехнология в основном ориентирована на эффективное использование ресурсов Мирового океана. Прежде всего, это использование морской биоты для получения пищевых, технических, биологически активных и лекарственных веществ.

Современная биотехнология - это одно из приоритетных направлений национальной экономики всех развитых стран. Путь повышения конкурентности биотехнологических продуктов на рынках сбыта является одним из основных в общей стратегии развития биотехнологии промышленно развитых стран. Стимулирующим фактором выступают специально принимаемые правительственные программы по ускоренному развитию новых направлений биотехнологии.

Госпрограммы предусматривают выдачу инвесторам безвозмездных ссуд, долгосрочных кредитов, освобождение от уплаты налогов. В связи с тем что проведение фундаментальных и ориентированных работ становится все более дорогостоящим, многие страны стремятся вывести значительную часть исследований за пределы национальных границ.

Как известно, вероятность успеха осуществления проектов НИОКР в целом не превышает 12-20 %, около 60 % проектов достигают стадии технического завершения, 30 % - коммерческого освоения и только 12 % оказываются прибыльными.

Особенности развития исследований и коммерциализации биологических технологий в США, Японии, странах ЕС и России

США. Лидирующее положение в биотехнологии по промышленному производству биотехнологических продуктов, объемам продаж, внешнеторговому обороту, ассигнованиям и масштабам НИОКР занимают США, где уделяется огромное внимание развитию данного направления. В этом секторе к 2003 г. было занято свыше 198 300 чел.

Ассигнования в этот сектор науки и экономики в США значительны и составляют свыше 20 млрд дол. США ежегодно. Доходы биотехнологической индустрии США выросли с 8 млрд дол. в 1992 г. до 39 млрд дол. в 2003 г.

Эта отрасль находится под пристальным вниманием государства. Так, в период становления новейшей биотехнологии и возникновения ее направлений, связанных с манипулированием генетическим материалом, в середине 70-х гг. прошлого столетия конгресс США уделял большое внимание вопросам безопасности генетических исследований. Только в 1977 г. состоялось 25 специальных слушаний и было принято 16 законопроектов.

В начале 90-х гг. акцент сместился на разработку мер по поощрению практического использования биотехнологии для производства новых продуктов. С развитием биотехнологии в США связывают решение многих ключевых проблем: энергетической, сырьевой, продовольственной и экологической.

Среди биотехнологических направлений, близких к практической реализации или находящихся на стадии промышленного освоения, следующие:
- биоконверсия солнечной энергии;
- применение микроорганизмов для повышения выхода нефти и выщелачивания цветных и редких металлов;
- конструирование штаммов, способных заменить дорогостоящие неорганические катализаторы и изменить условия синтеза для получения принципиально новых соединений;
- применение бактериальных стимуляторов роста растений, изменение генотипа злаковых и их приспособление к созреванию в экстремальных условиях (без вспашки, полива и удобрений);
- направленный биосинтез эффективного получения целевых продуктов (аминокислот, ферментов, витаминов, антибиотиков, пищевых добавок, фармакологических препаратов;
- получение новых диагностических и лечебных препаратов на основе методов клеточной и генетической инженерии.

Роль лидера США обусловлена высокими ассигнованиями государства и частного капитала на фундаментальные и прикладные исследования. В финансировании биотехнологии ключевую роль играют Национальный научный фонд (ННФ), министерства здравоохранения и социального обеспечения, сельского хозяйства, энергетики, химической и пищевой промышленности, обороны, Национальное управление по аэронавтике и исследованию космического пространства (НАСА), внутренних дел. Ассигнования выделяются по программно-целевому принципу, т.е. субсидируются и заключаются контракты на исследовательские проекты.

При этом крупные промышленные компании устанавливают деловые отношения с университетами и научными центрами. Это способствует формированию комплексов в той или иной сфере, начиная от фундаментальных исследований до серийного выпуска продукта и поставки на рынок. Такая «система участия» предусматривает формирование специализированных фондов с соответствующими экспертными советами и привлечение наиболее квалифицированных кадров.

При выборе проектов с высокой коммерческой результативностью стало выгодным использовать так называемый «анализ с учетом заданных ограничений». Это позволяет существенно сократить сроки реализации проекта (в среднем с 7-10 до 2-4 лет) и повысить вероятность успеха до 80 %. Понятие «заданные ограничения» включают потенциальную возможность успешной продажи продукта и получения прибыли, увеличения годового производства, конкурентоспособность продукта, потенциальный риск с позиций сбыта, возможности перестройки производства с учетом новых достижений и т.д.

Ежегодные общие государственные расходы США на генно-инженерные и биотехнологические исследования составляют миллиарды долларов. Инвестиции частных компаний существенно превосходят эти показатели. Только на создание диагностических и противоопухолевых препаратов ежегодно выделяется несколько миллиардов долларов. В основном это следующие направления: методы рекомбинации ДНК, получение гибридов, получение и применение моноклональных антител, культуры тканей и клеток.

В США стало обычным, когда компании, не связанные ранее с биотехнологией, начинают приобретать пакеты акций действующих компаний и строить собственные биотехнологические предприятия (табл. 1.1). Это, например, практика таких химических гигантов, как Philips Petrolium, Monsanto, Dow Chemical. Около 250 химических компаний имеют в настоящее время интересы в области биотехнологии. Так, у гиганта химической индустрии США - компании De Pont есть несколько биотехнологических комплексов стоимостью 85-150 тыс. дол. со штатом 700-1 000 чел.

Подобные комплексы созданы в структуре Monsanto, более того, в настоящее время до 75 % бюджета (свыше 750 млн дол.) направляется в сферу биотехнологии. В сфере внимания этих компаний - производство генно-инженерного гормона роста, а также ряда генно-инженерных препаратов для ветеринарии и фармакологии. Кроме этого, фирмы совместно с университетскими исследовательскими центрами подписывают контракты на проведение совместных НИОКР.

Таблица 1.1. Крупнейшие концерны и фармацевтические фирмы США, производящие медицинские биотехнологические препараты


Существует мнение, что все необходимые условия для становления и развития биотехнологии в США подготовил венчурный бизнес. Для крупных фирм и компаний венчурный бизнес является хорошо отработанным приемом, позволяющим за более короткий срок получить новые разработки, привлекая для этого мелкие фирмы и небольшие коллективы, нежели заниматься этим собственными силами.

Например, в 80-е гг. General Electric с помощью мелких фирм стал осваивать производство биологически активных соединений, только в 1981 г. его рисковые ассигнования в биотехнологии составили 3 млн дол. Риск с участием мелких фирм обеспечивает крупным компаниям и корпорациям механизм отбора экономически оправданных нововведений с большими коммерческими перспективами.

Н.А. Воинов, Т.Г. Волова

Биотехнология - это сознательное производство необходимых человеку продуктов и материалов с помощью живых организмов и биологических процессов .

С незапамятных времен биотехнология применялась преимущественно в пищевой и легкой промышленности: в виноделии, хлебопечении, сбраживании молочных продуктов, при обработке льна и кож, основанных на применении микроорганизмов. В последние десятилетия возможности биотехнологии необычайно расширились. Это связано с тем, что ее методы выгоднее обычных по той простой причине, что в живых организмах биохимические реакции, катализируемые ферментами, идут при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду.

Объектами биотехнологии являются многочисленные представители групп живых организмов - микроорганизмы (вирусы, бактерии, простейшие, дрожжевые грибы), растения, животные, а также изолированные из них клетки и субклеточные компоненты (органеллы) и даже ферменты. Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.

Главным направлением биотехнологии является производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферменты, витамины, гормоны), лекарственных препаратов (антибиотики, вакцины, сыворотки, высокоспецифичные антитела и др.), а также ценных соединений (кормовые добавки, например, незаменимые аминокислоты, кормовые белки и т. д.).

Методы генетической инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин и соматотропин (гормон роста), которые необходимы для лечения генетических болезней человека.

Одним из важнейших направлений современной биотехнологии является также использование биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязненной почвы и т. п.).

Так, для извлечения металлов из сточных вод могут широко использоваться штаммы бактерий, способные накапливать уран, медь, кобальт. Другие бактерии родов Rhodococcus и Nocardia с успехом применяют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти. Ассимилируя углеводороды нефти, такие микроорганизмы преобразуют их в белки, витамины из группы В и каротины.

Некоторые из штаммов галобактерий с успехом применяют для удаления мазута с песчаных пляжей. Получены также генно-инженерные штаммы, способные расщеплять октан, камфару, нафталин, ксилол, эффективно утилизировать сырую нефть.

Большое значение имеет использование методов биотехнологии для защиты растений от вредителей и болезней.

Биотехнология проникает в тяжелую промышленность, где микроорганизмы используются для добычи, превращения и переработки природных ископаемых. Уже в древности первые металлурги получали железо из болотных руд, производимых железобактериями, которые способны концентрировать железо. Теперь разработаны способы бактериальной концентрации ряда других ценных металлов: марганца, цинка, меди, хрома и др. Эти методы используются для разработки отвалов старых рудников и бедных месторождений, где традиционные методы добычи экономически невыгодны.

Биотехнология решает не только конкретные задачи науки и производства. У нее есть более глобальная методологическая задача - она расширяет и ускоряет масштабы воздействия человека на живую природу и способствует адаптации живых систем к условиям существования человека, т. е. к ноосфере. Биотехнология, таким образом, выступает в роли мощного фактора антропогенной адаптивной эволюции.

У биотехнологии, генетической и клеточной инженерии многообещающие перспективы. При появлении все новых и новых векторов человек с их помощью будет внедрять нужные гены в клетки растений, животных и человека. Это позволит постепенно избавиться от многих наследственных болезней человека, заставить клетки синтезировать необходимые лекарства и биологически активные соединения, а затем - непосредственно белки и незаменимые аминокислоты, употребляемые в пищу. Используя методы, уже освоенные природой, биотехнологи надеются получать с помощью фотосинтеза водород - самое экологически чистое топливо будущего, электроэнергию, превращать в аммиак атмосферный азот при обычных условиях.

Посетители конференции Startup Village, прошедшей на минувшей неделе в Сколково, имели уникальную возможность заглянуть в то недалекое будущее, когда человечество, вынужденное пересмотреть рацион питания, начнет получать значительную долю белков за счет насекомых

На одном из стендов на выставке стартапов расположились производители кормового протеина из личинок мух, представляющие липецкую компанию «Новые Биотехнологии». Пока корм предназначен для животных, но в будущем блюда из насекомых, как следует из многочисленных прогнозов, перестанут быть экзотикой и в человеческом меню. Попробовать продукт с исключительными питательными свойствами на Startup Village отважились пятеро смельчаков. Корреспондент сайт не рискнул последовать их примеру, но зато подробно расспросил дегустаторов, каков он, вкус еды будущего, а заодно узнал, что окруженные теплом и заботой селекционеров мухи из Липецка становятся гораздо плодовитее своих сородичей.

Алексей Истомин с продукцией "Новых Биотехнологий" на Startup Village. Фото: сайт

«Новые Биотехнологии» специализируются на производстве высокобелкового корма из высушенных и измельченных личинок зеленых мясных мух по аналогии с тем механизмом, над выработкой которого природа трудилась миллионы лет. «Животные, рыбы, птицы размножаются, питаются, оставляют после себя навоз и помет, умирают, а природа все это неустанно перерабатывает.. - Мухи откладывают на отходах яйца, из них появляются личинки, которые выделяют ферменты, ускоряющие процесс разложения и минерализации отходов. При этом личинки сами становятся кормом для животных, рыб и птиц. А оставшийся субстрат под воздействием дождей и солнца в виде органического удобрения попадает в почву и способствует бурному росту фитомассы, которая также является кормом для всего живого. Иными словами, происходит рециркуляция питательных веществ, причем безо всяких пестицидов и ядов. Только органика».

Этот природный процесс и заимствовали в компании «Новые Биотехнологии». Получившаяся в результате применения технологии биомасса, личинки мух, обладают высоким содержанием питательных веществ. На 50-70% биомасса состоит из сырого протеина, 20-30% приходятся на сырой жир, 5-7% - это сырая клетчатка.

При описании положительного эффекта применения кормового белка (коммерческое название - «Зоопротеин») в разных отраслях сельского хозяйства Алексей Истомин был весьма убедителен. «В свиноводстве применение в микродозах белково-липидного концентрата в качестве добавки в рацион поросят, свиней, хряков позволяет повысить усвояемость пищи и естественную резистентность организма болезням и вирусам, увеличить привес, активность и приплод, - перечисляет преимущества корма из личинок мух г-н Истомин. - Это происходит за счет содержания в «Зоопротеине» большого количества ферментов, хитина, меланина, иммуномодуляторов. В птицеводстве включение нашего кормового белка в состав рациона для цыплят-бройлеров, индеек, уток и другой птицы позволяет повысить ежедневный привес и снизить кормовой коэффициент. У кур-несушек наблюдается повышение яйценоскости, возрастает резистентность организма к болезням и вирусам, снижается смертность». В звероводстве добавление «Зоопротеина» в корм норок, песцов, лисиц приводит к улучшению качества меха и снижению процента брака. Животные имеют большую длину тела и обхват груди, следовательно, из них можно получить большее количество шкурок.

Слева направо: готовый корм, высушенные и живые личинки. Фото: сайт

Появление корма из мух обрадует и владельцев домашних питомцев. По словам Алексея Истомина, «у кошек и собак легче проходит течка и линька, повышается мышечный тонус и активность, шерсть становится более плотной; животные меньше болеют». Здоровее при добавлении белка из личинок мух в корм становятся и домашние птицы, их окрас становится ярче. Мальки аквариумных рыбок развиваются в два раза быстрее, причем выживаемость мальков приближается к 100%.

Чудодейственная технология возникла не на пустом месте - ее теоретические основы были заложены еще полвека назад во Всесоюзном научно-исследовательском институте животноводства, а также в Новосибирском государственном сельскохозяйственном институте. Там в лабораторных условиях всесторонне изучали кормовые добавки из личинок мух. Сейчас работы в этом направлении продолжаются Новосибирском государственном аграрном университете, ВНИИЖ им. Л.К. Эрнста, Институте проблем экологии и эволюции им. А.Н. Северцова. По словам Алексея Истомина, эффективность использования белкового корма, полученного в результате переработки отходов личинками мух, по сравнению с другими животными белками (рыбная и мясо-костная мука) подтверждена исследованиями, проведенными во Всероссийском научно-исследовательском институте животноводства и Всероссийском научно-исследовательском и технологическом институт птицеводства. Примечательно, что со временем актуальность этой технологии лишь растет, ведь мир столкнулся с острым дефицитом белков животного происхождения.

«То, что нам мешает, плохо пахнет и требует больших затрат, может помочь и работать на благо отечественного сельского хозяйства, принося дополнительную прибыль и снижая нагрузку на окружающую среду»

В компании «Новые Биотехнологии» его оценивают в 25 млн тонн; в России аналогичный показатель - 1 млн тонн. С 1961 года население Земли выросло более чем в два раза, а мировое потребление мяса - в 4 раза. По прогнозам, до 2030 года глобальное потребление животного белка увеличится на 50%. Пока в сельском хозяйстве его основными источниками являются рыба (рыбная мука) и мясо-костная мука. «Самая качественная рыбная мука производится в Марокко, Мавритании и Чили, и ее стоимость увеличивается пропорционально издержкам на логистику. Цена рыбной муки за последние 15 лет выросла в 8 раз, - делится статистикой Алексей Истомин. - Многие производители сельскохозяйственной продукции отказываются от качественной импортной рыбной муки в пользу более дешевых и менее качественных аналогов, а также переходят на мясо-костную муку или растительные белки, в частности, сою. Использование растительных белков не позволяет достичь желаемого результата - такой протеин требует большого количества земельных ресурсов и не может в полной мере заменить животный белок по составу».

Проект "Новых Биотехнологий" вызвал интерес у вице-премьера Аркадия Дворковича и губернатора Ростовской области Василия Голубева. Фото: сайт

Кроме экономических, есть и экологические предпосылки смены кормовой парадигмы. Так, для изготовления 1 тонны муки требуется выловить 5 тонн промысловой рыбы. Учитывая, что потребность в животных белках велика, вылов рыбы достиг значительных показателей (170 млн тонн в 2015-м году). Экосистема не успевает воспроизвести рыбные запасы в морях. При изготовлении одной тонны рыбной муки в атмосферу выделяется почти 11 тонн углекислого газа. Дополнительные расходы на экологию в этом случае оценивается в 3,5 тысячи долларов. При производстве одной тонны муки из личинок мух в атмосферу попадает в 5 раз меньше СО2. То есть каждая произведенная тонна белка из личинок мух сохраняет 5 тонн рыбы в море.

«Вкус необычный, не похож ни на что. Зато этот белок укрепляет иммунитет и способствует росту мышечной массы»

Задумавшись об альтернативных источниках животного белка, исследователи обратили внимание на насекомых. На планете - более 90 тысяч видов мух, и каждый из них питается определенными отходами: растительными, навозом/пометом, пищевые отходы и т.д. «То, что нам мешает, плохо пахнет и требует больших затрат, - экологических, финансовых, энергетических - может помочь и работать на благо отечественного сельского хозяйства, принося дополнительную прибыль и снижая нагрузку на окружающую среду», - говорит Алексей Истомин. По крайне мере, опытное производство компании «Новые Биотехнологии» в Липецке доказывает перспективность использования технологии в промышленных условиях.

Фарш из Люси

Известные многим металлически-зелёные яркие мухи Lucilia caesar (в компании этот вид насекомым ласково именуют Люсей) на производстве в Липецке содержатся в специальных инсектариях. Там живет несколько десятков миллионов мух. Это во многом уникальные насекомые. Чтобы улучшить их репродукционные способности, ученые более двух лет вели кропотливую селекционную работу, по определенной методике скрещивая насекомых. Если в природе одна муха делает кладку в 60 яиц, то у липецких насекомых кладка (и, следовательно, количество личинок и получившегося из них корма) - в среднем в три раза больше. Никаких генетических манипуляций над мухами специалисты «Новых Биотехнологий» не производят, речь идет о «традиционной» селекции, уверяет г-н Истомин.Показывая на затянутую мелкой сеткой клетку-садок с роящимися насекомыми на стенде, он продолжает: «Еще вчера здесь было всего 6 мух; всего за сутки их количество достигло несколько сотен. Это стало возможным благодаря правильному подбору цикла развития кукол, называемых еще пупариями. Мы подгадали цикл таким образом, чтобы сегодня их стало намного больше. Завтра их количество еще подрастет». Отчасти этот процесс сдерживался не слишком подходящей погодой: оптимальная температура для превращения куколки в муху - около 30-ти градусов. Несмотря на то, что на Startup Village по ночам насекомых заносили в помещение, температура там была ниже.

На производстве в Липецке мухам - полное раздолье. Фото: "Новые Биотехнологии".

На производстве в Липецке мухам - полное раздолье, там их оберегают и от неблагоприятных условий, и от стресса. Мухи содержатся в специальных клетках-садках, в которых есть вода, сахар, сухое молоко и боксы с мясным фаршем, где мухи делают кладки яиц. Кладки вынимают ежесуточно. Контроль качества и чистоты популяции осуществляет главный технолог. Для этого отбирают личинки, которые в специальных условиях окукливаются и в виде куколок хранятся в холодильной камере. При необходимости куколки помещают в клетки инсектария, и через некоторое время из них появляются мухи.

Как только из яиц появились личинки, их перемещают в выростной цех. В специальных лотках на подстилке из опилок размещают кормовой субстрат и кладки яиц. Личинки очень прожорливы и быстро растут, увеличиваясь в размере до 350 раз за сутки. Период откармливания и активного роста составляет 3-4 суток. Затем выросшие личинки оказываются на выгонке. Так называют процесс отделения личинок от органического субстрата. После биомассу высушивают и отправляют на хранение.

Мухи растут на мясе с птицефабрики, которая находится недалеко от опытного производства компании «Новые биотехнологии». Личинки, выращенные на мясе птицы, обладают более высокими показателями содержания питательных веществ, чем те, которые культивировались на навозе и помёте. При этом запасов мяса должно быть много - чтобы произвести 1 кг «Зоопротеина», необходимо вырастить 3,5 кг живых личинок, для чего требуется 10 кг мясных отходов.

С 1961 года население Земли выросло более чем в два раза, а мировое потребление мяса - в 4 раза. По прогнозам, до 2030 года глобальное потребление животного белка увеличится на 50%

«Среднестатистический падеж на птицефабриках составляет 5% от общего поголовья. Такой вид отходов доставляет большое количество хлопот птицеводческим хозяйствам. Это и экологические вопросы (надо утилизировать), и финансовые (за утилизацию надо платить), и организационные (собирать, хранить, доставлять, учитывать). Поэтому применение нашего метода наиболее эффективно непосредственно на птицефабрике, что позволяет делать производство птицы безотходным, - пояснил Алексей Истомин. - В целом, рост объемов сельскохозяйственного производства неминуемо влечёт за собой увеличение негативного влияния на окружающую среду. По данным Минсельхоза, в России общая площадь земель, загрязненных сельскохозяйственными отходами, превышает 2,4 млн гектаров. В 2015-м году суммарное количество таких отходов превысило 380 млн тонн. В стране практически отсутствует культура переработки отходов сельского хозяйства. Счет таким производствам идет на единицы».

Опытное производство в Липецке. Фото: "Новые Биотехнологии"

Сложность промышленного внедрения технологии обусловлена, прежде всего, административными и экологическими факторами. «За границей, в частности, в Китае и Индонезии используется бассейновый («открытый») метод, поясняет Истомин. - Он неприемлем в наших условиях, поскольку личинки в процессе жизнедеятельности вырабатывают большое количество аммиака. В нашем проекте предложен «закрытый» метод с использованием выростных шкафов для мух, оборудованных локальной вытяжной вентиляцией, микробиологическим фильтром для очистки воздуха, особыми системами приготовления сырья, инфракрасной сушки. Все это позволяет максимально выполнить требования, предъявляемые к экологической безопасности».

Личинки очень прожорливы и быстро растут, увеличиваясь в размере до 350 раз за сутки. Фото: "Новые Биотехнологии"

Сейчас компания «Новые Биотехнологии» находится в процессе получения статуса резидента «Сколково». Команда рассчитывает на помощь Фонда главным образом в сертификации продукции. В России отсутствует нормативная база, связанная с регламентацией использования технологии переработки отходов личинками мух, поэтому, рассказывает Алексей Истомин, «приходится изощряться». При этом контролирующие инстанции констатируют безопасность продукции: «Липецкая облветлаборатория» производит исследования живой биомассы на наличие сальмонелл, генома возбудителей орнитоза и гриппа у птиц, яиц и личинок гельминтов. У высушенной биомассы личинок мух определяется массовая доля сырого протеина, массовая доля сырого жира, влажность и токсичность. «Тульская межобластная ветеринарная лаборатория» проводит исследования органического удобрения зоогумуса на наличие патогенной флоры. Результаты каждого исследования оформлены протоколом».

Собеседник сайт убежден: в обозримом будущем со вкусом белка из насекомых познакомятся на только животные, но и люди. Эту точку зрения разделяет все больше специалистов. Так, три года назад Продовольственная и сельскохозяйственная организация ООН выпустила исследование, в котором говорилось, что в рационе 2 миллиардов человек в той или иной степени насекомые присутствуют уже сейчас. Чтобы справиться с голодом и загрязнением окружающей среды, человечеству следует есть больше насекомых, призвали составители отчета.

Тем более что, как свидетельствует личный опыт Алексея Истомина, это не так страшно. Вот уже несколько месяцев он добавляет столовую ложку белка из насекомых в утренний шейк из молока, банана и прочих традиционных ингредиентов. «Вкус необычный, не похож ни на что. Зато укрепляет иммунитет и способствует росту мышечной массы», - рассказывает Алексей.

Baklanov Mikhail and 8 others like this" data-format="people who like this" data-configuration="Format=%3Ca%20class%3D%27who-likes%27%3Epeople%20who%20like%20this%3C%2Fa%3E" >

Лекция по биотехнологии №1

    Введение в биотехнологию. Экологическая, сельскохозяйственная, промышленная биотехнология.

    Биотехнологическое получение белков, ферментов, антибиотиков витаминов, интерферона.

Вопрос №1

Человек с древнейших времен использовал биотехнологии в виноделии, пивоварении или хлебопечении. Но процессы, лежащие в основе этих производств, долго оставались загадочными. Их природа прояснилась лишь в конце XIX - начале ХХ века, когда были разработаны методы культивирования микроорганизов, пастеризации, выделены чистые линии бактерий и ферменты. Для обозначения наиболее тесно связанных с биологией разнообразных технологий раньше использовали такие наименования, как «прикладная микробиология», «прикладная биохимия», «технология ферментов», «биоинженерия», «прикладная генетика», «прикладная биология». Это привело к возникновению новой отрасли - биотехнологической.

Французский химик Луи Пастер в 1867 году доказал, что брожение - это результат жизнедеятельности микроорганизмов. Немецкий биохимик Эдуард Бухнер уточнил, что оно вызывается и бесклеточным экстрактом, содержащим ферменты, катализирующие химические реакции. Использование чистых ферментов для переработки сырья послужило толчком к развитию зимологии. Например, альфа-амилаза требуется для расщепления крахмала.

В это же время сделаны важные открытия в области нарождавшейся генетики, без которой была бы немыслима биотехнология современного уровня. В 1865 году австрийский монах Грегор Мендель ознакомил Брюннское общество естествоиспытателей со своими «Опытами над растительными гибридами», в которых он описал законы передачи наследственности. В 1902 году биологи Уолтер Саттон и Теодор Бовери предположили, что передача наследственности связана с материальными носителями - хромосомами. Уже тогда было известно, что живой организм состоит из клеток. Немецкий патолог Рудольф Вирхов дополняет клеточную теорию принципом «каждая клетка - из клетки». А опыты ботаника Готлиба Хаберландта продемонстрировали, что клетка может существовать в искусственной среде и отдельно от организма. Эксперименты последнего привели к открытию роли витаминов, минеральных добавок и гормонов.

Потом было слово

Годом рождения самого термина «биотехнология» принято считать 1919-й, когда был опубликован манифест «Биотехнология переработки мяса, жиров и молока на больших сельскохозяйственных фермах». Его автор - венгерский агроэкономист, в то время министр продовольствия Карл Эреки. Манифест описывал переработку сельскохозяйственного сырья в другие пищевые продукты с помощью биологических организмов. Эреки предсказывал новую эпоху в истории человечества, сравнивая открытие этого метода с величайшими технологическими революциями прошлого: появлением производящего хозяйства в эпоху неолита и металлургии в бронзовом веке. Но до конца 1920-х годов под биотехнологией подразумевалось лишь использование микроорганизмов для ферментации. В 1930-е развивается медицинская биотехнология. Открытый в 1928 году Александером Флемингом пенициллин, производимый из грибков Penicillium notatum, уже в 1940-х годах начал выпускаться в промышленных масштабах. А в конце 1960-х - начале 1970-х годов была сделана попытка объединить пищевую промышленность с нефтеперерабатывающей. Компания British Petroleum разработала технологию бактериального синтеза кормового белка из отходов нефтепромышленности.

В 1953 году было совершено открытие, которое вызвало впоследствии переворот в биотехнологии: Джеймс Уотсон и Фрэнсис Крик расшифровали структуру ДНК. И в 1970-х годах к биотехнологическим приемам добавилось манипулирование наследственным материалом. Буквально за два десятилетия были открыты все необходимые для этого инструменты: выделена обратная транскриптаза - фермент, который позволяет «переписывать» генетический код из РНК обратно в ДНК, открыты ферменты для разрезания ДНК, а также полимеразная цепная реакция для многократного воспроизводства отдельных фрагментов ДНК.

В 1973 году создан первый генетически рекомбинантный организм: в бактерию был перенесен генетический элемент от лягушки. Началась эра генетической инженерии, которая едва сразу же не закончилась: в 1975 году в городе Асиломар (США) на Международном конгрессе, посвященном изучению рекомбинантных ДНК-молекул, впервые были высказаны опасения относительно применения новых технологий.

«Тревогу забили не политики, не религиозные группы и не журналисты, как можно было бы ожидать. Это были сами ученые, - вспоминал Пол Берг, один из организаторов конференции и пионер создания рекомбинантных молекул ДНК. - Многие ученые опасались, что общественные дебаты приведут к неоправданным ограничениям на молекулярную биологию, но они поощряли ответственную дискуссию, приведшую к консенсусу». Участники конгресса выступили за мораторий на ряд потенциально опасных исследований.

Тем временем от биотехнологии и генетической инженерии отпочковалась синтетическая биология, которая занимается дизайном новых биологических компонентов и систем и редизайном уже существующих. Первой ласточкой синтетической биологии стал искусственный синтез транспортной РНК в 1970 году, а сегодня возможен уже синтез целых геномов из элементарных структур. В 1978 году фирма Genentech сконструировала в лаборатории бактерию Е.coli, синтезирующую человеческий инсулин. С этого момента генетическая рекомбинация окончательно входит в арсенал биотехнологии и считается едва ли не ее синонимом. Одновременно был осуществлен первый перенос новых генов в геномы животной и растительной клетки. Нобелевский лауреат 1980 года Уолтер Гилберт заявил: «Мы можем получить для медицинских целей или для коммерческого применения фактически любой человеческий белок, способный влиять на важные функции человеческого тела».

В 1985 году проходят первые полевые испытания трансгенных растений, устойчивых к гербицидам, насекомым, вирусам и бактериям. Появляются патенты на растения. Начинается расцвет молекулярной генетики, бурно развиваются аналитические методы, такие как секвенирование, то есть определение первичной последовательности белков и нуклеиновых кислот.

В 1995 году на рынок было выпущено первое трансгенное растение (томат Flavr Savr), а уже к 2010 году трансгенные сельскохозяйственные культуры выращивали в 29 странах на 148 миллионах гектаров (10% от общей площади возделываемых земель). В 1996 году на свет появляется первое клонированное животное - овца Долли. К 2010 году было клонировано больше 20 видов животных: коты, собаки, волки, лошади, свиньи, муфлоны.

Направления биотехнологии и получаемые с ее помощью продукты

Технологии и биотехнологии

Технология - это способы и приемы, используемые для получения из исходного материала (сырья) некоторого продукта. Очень часто для получения одного продукта требуется не один, а несколько источников сырья, не один способ или прием, а последовательность нескольких. Все многообразие технологий можно подразделить на три основных класса:

Физико-механические технологии;

Химические технологии;

Биотехнологии.

В физико-механических технологиях исходный материал (сырье) в процессе получения продукта меняет форму или агрегатное состояние без изменения своего химического состава (например, технология переработки древесины для производства деревянной мебели, различные методы получения металлических изделий: гвоздей, деталей машин и др.).

В химических технологиях в процессе получения продукта сырье претерпевает изменения химического состава (например, получение полиэтилена из природного газа, спирта - из природного газа или древесины, синтетического каучука - из природного газа).

Биотехнология как наука может рассматриваться в двух временных и сущностных измерениях: современном и традиционном, классическом.

Новейшая биотехнология (биоинженерия) - это наука о генно-инженерных и клеточных методах и технологиях создания и использования генетически трансформированных (модифицированных) растений, животных и микроорганизмов в целях интенсификации производства и получения новых видов продуктов различного назначения.

В традиционном, классическом смысле биотехнологию можно определить как науку о методах и технологиях производства, транспортировки, хранения и переработки сельскохозяйственной и другой продукции с использованием обычных, нетрансгенных (природных и селекционных) растений, животных и микроорганизмов, в естественных и искусственных условиях.

Высшим достижением новейшей биотехнологии является генетическая трансформация , перенос чужеродных (природных или искусственно созданных) донорских генов в клетки-реципиенты растений, животных и микроорганизмов, получение трансгенных организмов с новыми или усиленными свойствами и признаками.

Цель биотехнологических исследований - повышение эффективности производства и поиск биологических систем, с помощью которых можно получить целевой продукт.

Биотехнология дает возможность воспроизводить нужные продукты в неограниченных количествах, применяя новые технологии, позволяющие переносить гены в клетки-продуценты или в целый организм (трансгенные животные и растения), синтезировать пептиды, создавать искусственные вакцины.

Основные направления развития биотехнологии

Расширение сфер применения биотехнологии существенно влияет на повышение уровня жизни человека (рис. 1.2). Быстрее всего внедрение биотехнологических процессов дает результаты в медицине, но, по мнению многих специалистов, основной экономический эффект будет получен в сельском хозяйстве и химической промышленности.

Микрочипы, клеточные культуры, моноклональные антитела и белковая инженерия - это лишь небольшая часть современных биотехнологических приемов, используемых на разных стадиях разработки многих видов продукции. Понимание молекулярных основ биологических процессов дает возможность значительно сократить затраты на разработку и подготовку производства определенного продукта, а так-же повысить его качество. Например, сельскохозяйственныебиотехнологические компании, создающие устойчивые к насекомым сорта растений, могут измерять количество защитного белка в клеточной культуре и не тратить ресурсы на выращивание самих растений; фармакологические компании могут использовать клеточные культуры и микрочипы для проверки безопасности и эффективности препаратов, а также для выявления возможных побочных эффектов на ранних стадиях получения лекарственных средств.

Генетически модифицированные животные, в организмах которых происходят процессы, отражающие физиологию различных человеческих заболеваний, обеспечивают ученых вполне адекватными моделями для проверки действия того или иного вещества на организм. Это также позволяет компаниям выявлять наиболее безопасные и эффективные препараты на более ранних стадиях разработки.

Все это свидетельствует о важном значении биотехнологии и широких возможностях ее применения в различных отраслях народного хозяйства. Какие же направления являются наиболее приоритетными в этой области? Рассмотрим их.

1. Повышение безопасности биотехнологического производства для человека и окружающей среды . Требуется создание таких рабочих систем, которые будут функционировать только в строго контролируемых условиях. Например, штаммы кишечной палочки, используемые в биотехнологии, лишены надмембранных структур (оболочек); такие бактерии просто не могут существовать вне лабораторий или вне специальных технологических установок. Повышенной безопасностью обладают и многокомпонентные системы, каждая из которых не способна к самостоятельному существованию.

2. Снижение доли отходов производственной деятельности человека . Отходами производства называются его побочные продукты, которые не могут использоваться человеком или другими компонентами биосферы и применение которых нерентабельно или сопряжено с каким-то риском. Такие отходы накапливаются в пределах производственных помещений (территорий) или выбрасываются в окружающую среду. Следует стремиться к изменению соотношения «полезный продукт/отходы» в пользу полезного продукта. Этого достигают различными способами. Во-первых, отходам необходимо найти полезное применение. Во-вторых, их можно направить на вторичную переработку, создав замкнутый технологический цикл. И наконец, можно изменить саму рабочую систему так, чтобы уменьшить долю отходов.

3. Снижение энергетических затрат на производство продукта, т. е. внедрение энергосберегающих технологий. Принципиальное решение этой проблемы возможно в первую очередь за счет использования возобновляемых источников энергии. Например, годовое потребление энергии ископаемого топлива соизмеримо с объемом чистой валовой продукции всех фотосинтезирующих организмов на Земле. Для трансформации солнечной энергии в формы, доступные для современных силовых установок, создаются (в том числе методами клеточной инженерии) энергетические плантации быстрорастущих растений. Полученная биомасса используется для производства целлюлозы, биотоплива, а также биогумуса. Всесторонние выгоды подобных технологий очевидны. Использование методов клеточной инженерии для постоянного обновления посадочного материала обеспечивает получение в кратчайшие сроки большого количества растений, свободных от вирусов и микоплазм; при этом отпадает необходимость создания маточных плантаций. Снижается нагрузка на естественные насаждения древесных растений (в значительной мере они вырубаются для получения целлюлозы и топлива), уменьшаются потребнотси в ископаемом топливе (в общем-то, оно является экологически неблагоприятным, поскольку при его сжигании образуются недоокисленные вещества). При использовании биотоплива образуются углекислый газ и водяные пары, которые поступают в атмосферу, а затем вновь связываются растениями на энергетических плантациях.

4. Создание многокомпонентных растительных систем. Качество сельскохозяйственной продукции значительно ухудшается при применении минеральных удобрений и ядохимикатов, которые наносят колоссальный ущерб природным экосистемам. Преодолеть негативные последствия химизации сельскохозяйственного производства можно различными способами. Прежде всего необходимо отказаться от монокультур, т. е. от использования ограниченного набора биотипов (сортов, пород, штаммов). Недостатки монокультуры были выявлены еще в конце XIX столетия; они очевидны. Во-первых, в монокультуре возрастают конкурентные отношения между выращиваемыми организмами; в то же время монокультура оказывает лишь одностороннее воздействие на конкурирующие организмы (сорняки). Во-вторых, происходит избирательный вынос элементов минерального питания, что ведет к деградации почв. И наконец, монокультура неустойчива к патогенам и вредителям. Поэтому в течение XX в. она поддерживалась за счет исключительно высокой интенсивности производства. Разумеется, использование монокультур интенсивных сортов (пород, штаммов) упрощает разработку технологии производства продукции. Например, с помощью высоких технологий созданы сорта растений, устойчивые к определенному пестициду, который при возделывании именно данных сортов можно применять в высоких дозах. Однако в этом случае возникает вопрос безопасности такой рабочей системы для человека и окружающей среды. Кроме того, рано или поздно появятся расы патогенов (вредителей), устойчивые к данному пестициду.

Следовательно, необходим планомерный переход от монокультуры к многокомпонентным (поликлональным) композициям, включающим разные биотипы культивируемых организмов. Многокомпонентные композиции должны включать организмы с разным ритмом развития, с различным отношением к динамике физико-химических факторов среды, к конкурентам, патогенам и вредителям. В генетически гетерогенных системах возникают компенсаторные взаимодействия особей с различными генотипами, снижающие уровень внутривидовой конкуренции и автоматически увеличивающие давление культивируемых организмов на конкурирующие организмы других видов (сорняки). По отношению к патогенам и вредителям такая гетерогенная экосистема характеризуется коллективным групповым иммунитетом, который определяется взаимодействием множества структурных и функциональных особенностей отдельных био-типов.

5. Разработка новых препаратов для медицины . В настоящее время ведутся активные исследования в области медицины: создаются различные типы новых препаратов - целевые и индивидуальные.

Целевые препараты . Основными причинами онкологических заболеваний являются неконтролируемое деление клеток и нарушение процессов апоптоза. Действие препаратов, предназначенных для их устранения, может быть направлено на любую из молекул или клеточных структур, участвующих в этих процессах. Исследования, проведенные в области функциональной геномики, уже предоставили нам информацию о молекулярных изменениях, происходящих в предраковых клетках. На основе полученных данных можно создавать диагностические тесты для выявления молекулярных маркеров, сигнализирующих о начале онкологического процесса до того, как появляются первые видимые нарушения клеток или проявляются симптомы заболевания.

Большинство химиотерапевтических препаратов воздействует на белки, участвующие в процессе деления клетки. К сожалению, при этом погибают не только злокачественные клетки, но часто и нормальные делящиеся клетки организма, такие, как клетки системы кроветворения и волосяных фолликул. Чтобы предупредить появление этого побочного эффекта, некоторые компании начали разработку препаратов, которые останавливали бы клеточные циклы здоровых клеток непосредственно перед введением дозы химиотерапевтического агента.

Индивидуальные препараты . На сегодняшнем этапе развития науки начинается эпоха индивидуализированной медицины, в которой генетические различия пациентов будут учитываться для наиболее эффективного применения лекарств. Используя данные функциональной геномики, можно выявлять генетические варианты, отвечающие за предрасположенность конкретных пациентов к отрицательным побочным эффектам одних препаратов и за восприимчивость - к другим. Такой индивидуальный терапевтический подход, базирующийся на знании генома пациента, получил название фармакогеномики.


Биотехнология - это производственное использование биологических агентов или их систем для получения ценных продуктов и осуществления целевых превращений.

Биологические агенты в данном случае - микроорганизмы, растительные или животные клетки, клеточные компоненты (мембраны клеток, рибосомы, митохондрии, хлоропласты), а также биологические макромолекулы (ДНК, РНК, белки - чаще всего ферменты). Биотехнология использует также вирусную ДНК или РНК для переноса чужеродных генов в клетки.

Человек использовал биотехнологию многие тысячи лет: люди пекли хлеб, варили пиво, делали сыр, используя различные микроорганизмы, при этом, даже не подозревая об их существовании. Собственно сам термин появился в нашем языке не так давно, вместо него употреблялись слова «промышленная микробиология», «техническая биохимия» и др.

Вероятно, древнейшим биотехнологическим процессом было сбраживание с помощью микроорганизмов. В пользу этого свидетельствует описание процесса приготовления пива, обнаруженное в 1981 г. при раскопках Вавилона на дощечке, которая датируется примерно 6-м тысячелетием до н. э.

В 3-м тысячелетии до н. э. шумеры изготовляли до двух десятков видов пива. Не менее древними биотехнологическими процессами являются виноделие, хлебопечение, и получение молочнокислых продуктов. В традиционном, классическом, понимании биотехнология - это наука о методах и технологиях производства различных веществ и продуктов с использованием природных биологических объектов и процессов.

Термин «новая» биотехнология в противоположность «старой» биотехнологии применяют для разделения биопроцессов, использующих методы генной инженерии и более традиционные формы биопроцессов. Так, обычное производство спирта в процессе брожения – «старая» биотехнология, но использование в этом процессе дрожжей, улучшенных методами генной инженерии с целью увеличения выхода спирта – «новая» биотехнология.

Биотехнология как наука является важнейшим разделом современной биологии, которая, как и физика, стала в конце XX в. одним из ведущих приоритетов в мировой науке и экономике.

Всплеск исследований по биотехнологии в мировой науке произошел в 80-х годах, но, несмотря на столь короткий срок своего существования, биотехнология привлекла пристальное внимание, как ученых, так и широкой общественности. По прогнозам, уже в начале 21 века биотехнологические товары будут составлять четверть всей мировой продукции.

Что касается более современных биотехнологических процессов, то они основаны на методах рекомбинантных ДНК, а также на использовании иммобилизованных ферментов, клеток или клеточных органелл.

Современная биотехнология - это наука о генно-инженерных и клеточных методах создания и использования генетически трансформированных биологических объектов для улучшения производства или получения новых видов продуктов различного назначения.

Основные направления биотехнологии

Условно можно выделить следующие основные направления биотехнологии:

Биотехнология пищевых продуктов;
- биотехнология препаратов для сельского хозяйства;
- биотехнология препаратов и продуктов для промышленного и бытового использования;
- биотехнология лекарственных препаратов;
- биотехнология средств диагностики и реактивов.

Биотехнология также включает выщелачивание и концентрирование металлов, защиту окружающей среды от загрязнения, деградацию токсических отходов и увеличение добычи нефти.

Развитие биотопливного направления

Растительный покров Земли составляет более 1800 млрд. т сухого вещества, что энергетически эквивалентно известным запасам энергии полезных ископаемых. Леса составляют около 68% биомассы суши, травяные экосистемы - примерно 16%, а возделываемые земли - только 8%. Для сухого вещества простейший способ превращения в энергию заключается в сгорании - оно обеспечивает тепло, которое в свою очередь превращается в механическую или электрическую энергию.

Что же касается сырого вещества, то в этом случае древнейшим и наиболее эффективным методом превращения биомассы в энергию является получение биогаза (метана). Метановое «брожение», или биометаногенез, - давно известный процесс превращения биомассы в энергию. Он был открыт в 1776г. Вольтой, который установил наличие метана в болотном газе.

Отходы пищевой промышленности и сельскохозяйственного производства характеризуются высоким содержанием углерода (в случае перегонки свеклы на 1л отходов приходится до 50г углерода), поэтому они лучше всего подходят для метанового «брожения», тем более что некоторые из них получаются при температуре, наиболее благоприятной для этого процесса.

Конференция ООН по науке и технике для развивающихся стран (1979 г.) и эксперты Экономической и социальной комиссии по странам Азии и Тихого океана подчеркнули достоинства сельскохозяйственных программ, использующих биогаз.

Надо отметить, что 38% от 95-миллионного поголовья крупного рогатого скота в мире, 72% остатков сахарного тростника и 95% отходов бананов, кофе и цитрусовых приходятся на долю стран Африки, Латинской Америки, Азии и Ближнего Востока. Не удивительно, что в этих регионах сосредоточены огромные количества сырья для метанового «брожения».

Следствием этого явилась ориентация некоторых стран сельскохозяйственно ориентированной экономикой на биоэнергетику. Производство биогаза путем метанового «брожения» отходов - одно из возможных решений энергетической проблемы в большинстве сельских районов развивающихся стран.

Биотехнология в состоянии внести крупный вклад в решение проблем энергетики также посредством производства достаточно дешевого биосинтетического этанола, который, кроме того, является и важным сырьем для микробиологической промышленности при получении пищевых и кормовых белков, а также белково-липидных кормовых препаратов.

Достижения биотехнологии

С помощью биотехнологии получено множество продуктов для здравоохранения, сельского хозяйства, продовольственной и химической промышленности. Причем важно то, что многие из них не могли быть получены без применения биотехнологических способов. Особенно большие надежды связываются с попытками использования микроорганизмов и культур клеток для уменьшения загрязнения среды и производства энергии.

В молекулярной биологии использование биотехнологических методов позволяет определить структуру генома, понять механизм экспрессии генов, смоделировать клеточные мембраны с целью изучения их функций и т.д.

Конструирование нужных генов методами генной и клеточной инженерии позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми полезными для человека свойствами, ранее не наблюдавшимися в природе.

Микробиологическая промышленность в настоящее время использует тысячи штаммов различных микроорганизмов. В большинстве случаев они улучшены путем индуцированного мутагенеза и последующей селекции. Это позволяет вести широкомасштабный синтез различных веществ. Некоторые белки и вторичные метаболиты могут быть получены только путем культивирования клеток эукариот. Растительные клетки могут служить источником ряда соединений - атропин, никотин, алкалоиды, сапонины и др.

В биохимии, микробиологии, цитологии несомненный интерес вызывают методы иммобилизации как ферментов, так и целых клеток микроорганизмов, растений и животных. В ветеринарии широко используются такие биотехнологические методы, как культура клеток и зародышей, овогенез in vitro, искусственное оплодотворение.

Все это свидетельствует о том, что биотехнология станет источником не только новых продуктов питания и медицинских препаратов, но и получения энергии и новых химических веществ, а также организмов с заданными свойствами.

Видео: Biotechnology and the Emergence of New Therapeutics.