Меню
Бесплатно
Главная  /  Праздники  /  Самые важные открытия марсохода Curiosity

Самые важные открытия марсохода Curiosity

  • ChemCam представляет собой набор инструментов для проведения дистанционного химического анализа различных образцов. Работа проходит следующим образом: лазер проводит серию выстрелов по исследуемому объекту. Затем проводится анализ спектра света, который излучила испарившаяся порода. ChemCam может изучать объекты, расположенные на расстоянии до 7 метров от него. Стоимость прибора составила около 10 миллионов долларов (перерасход 1.5 млн. долл.). В штатном режиме фокусировка лазера на объекте проходит автоматически.
  • MastCam: система состоящая из двух камер, и содержит множество спектральных фильтров. Возможно получение снимков в естественных цветах размером 1600 × 1200 пикселей. Видео с разрешением 720p (1280 × 720) снимается с частотой до 10 кадров в секунду и аппаратно сжимается. Первая камера — Medium Angle Camera (MAC), имеет фокусное расстояние в 34 мм и 15 градусное поле зрения, 1 пиксель равен 22 см при расстоянии 1 км.
  • Narrow Angle Camera (NAC), имеет фокусное расстояние в 100 мм, 5.1 градусное поле зрения, 1 пиксель равен 7,4 см при расстоянии 1 км. Каждая камера имеет по 8 Гб флеш-памяти, которая способна хранить более 5500 необработанных изображений; имеется поддержка JPEG-сжатия и сжатия без потери качества. В камерах есть функция автоматической фокусировки, которая позволяет им сфокусироваться на объектах, от 2,1 м до бесконечности. Несмотря на наличие у производителя конфигурации с трансфокатором, камеры не имеют зума, поскольку времени для тестирования не оставалось. Каждая камера имеет встроенный фильтр Байера RGB и по 8 переключаемых ИК-фильтров. По сравнению с панорамной камерой, которая стоит на Спирите и Оппортьюнити (MER) и получает чёрно-белые изображения размером 1024 × 1024 пикселя, камера MAC MastCam имеет угловое разрешение в 1,25 раза выше, а камера NAC MastCam — в 3,67 раза выше.
  • Mars Hand Lens Imager (MAHLI): Система состоит из камеры, закреплённой на роботизированной «руке» марсохода, используется для получения микроскопических изображений горных пород и грунта. MAHLI может снять изображение размером 1600 × 1200 пикселей и с разрешением до 14,5 мкм на пиксель. MAHLI имеет фокусное расстояние от 18,3 мм до 21,3 мм и поле зрения от 33,8 до 38,5 градусов. MAHLI имеет как белую, так и ультрафиолетовую светодиодную подсветку для работы в темноте или с использованием флуоресцентной подсветки. Ультрафиолетовая подсветка необходима для вызова излучения карбонатных и эвапоритных минералов, наличие которых позволяет говорить о том, что в формировании поверхности Марса принимала участие вода. MAHLI фокусируется на объектах от 1 мм. Система может сделать несколько изображений с акцентом на обработку снимка. MAHLI может сохранить необработанное фото без потери качества или же сделать сжатие JPEG файла.
  • MSL Mars Descent Imager (MARDI): Во время спуска на поверхность Марса, MARDI передавал цветное изображение размером 1600 × 1200 пикселей со временем экспозиции в 1,3 мс, камера начала съёмку с расстояния 3,7 км и закончила на расстояния 5 метров от поверхности Марса, снимала цветное изображение с частотой 5 кадров в секунду, съёмка продлилась около 2-ух минут. 1 пиксель равен 1,5 метра на расстоянии 2 км, и 1,5 мм на расстоянии 2 метра, угол обзора камеры — 90 градусов. MARDI содержит 8 Гб встроенной памяти, которая может хранить более 4000 фотографий. Снимки с камеры позволили увидеть окружающий рельеф на месте посадки. JunoCam, построенная для космического аппарата Juno, основана на технологии MARDI.
  • Alpha-particle X-ray spectrometer (APXS): Это устройство будет облучать альфа-частицами и сопоставлять спектры в рентгеновских лучах для определения элементного состава породы. APXS является формой Particle-Induced X-ray Emission (PIXE), который ранее использовался в Mars Pathfinder и Mars Exploration Rovers. APXS был разработан Канадским космическим агентством. MacDonald Dettwiler (MDA) — Аэрокосмическая канадская компания, которая строит Canadarm и RADARSAT, несут ответственность за проектирование и строительство APXS. Команда по разработке APXS включает в себя членов из Университета Гвельфов, Университета Нью-Брансуик, Университета Западного Онтарио, НАСА, Университет Калифорнии, Сан-Диего и Корнельского университета.
  • Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA): CHIMRA представляет собой ковш 4х7 сантиметров, который зачерпывает грунт. Во внутренних полостях CHIMRA он просеивается через сито с ячейкой 150 микрон, чему помогает работа вибромеханизма, лишнее удаляется, а на просеивание отправляется следующая порция. Всего проходит три этапа забора из ковша и просеивания грунта. В результате остается немного порошка необходимой фракции, который и отправляется в грунтоприемник, на теле ровера, а лишнее выбрасывается. В итоге из всего ковша на анализ поступает слой грунта в 1 мм. Подготовленный порошок изучают приборы CheMin и SAM.
  • CheMin: Chemin исследует химический и минералогический состав, с помощью рентгеновского флуоресцентного инструмента и рентгеновской дифракции. CheMin является одним из четырёх спектрометров. CheMin позволяет определить обилие полезных ископаемых на Марсе. Инструмент был разработан Дэвидом Блейком в Ames Research Center НАСА и Jet Propulsion Laboratory НАСА. Марсоход будет бурить горные породы, а полученный порошок будет собран инструментом. Затем рентгеновские лучи, будут направлены на порошок, внутренняя кристаллическая структура полезных ископаемых отразится на дифракционной картине лучей. Дифракция рентгеновских лучей различна для разных минералов, поэтому картина дифракции позволит учёным определить структуру вещества. Информацию о светимости атомов и дифракционную картину будет снимать специально подготовленная E2V CCD-224 матрица размером 600х600 пикселей. У Кьюриосити имеется 27 ячеек для анализа образцов, после изучения одного образца ячейка может быть переиспользована, но анализ проводимый над ней будет иметь меньшую точность из-за загрязнения предыдущим образцом. Таким образом у ровера есть всего 27 попыток для полноценного изучения образцов. Ещё 5 запаянных ячеек хранят образцы с Земли. Они нужны чтобы протестировать работоспособность прибора в марсианских условиях. Для работы прибора нужна температура −60 градусов Цельсия, иначе будут мешать помехи от прибора DAN.
  • Sample Analysis at Mars (SAM): Набор инструментов SAM будет анализировать твёрдые образцы, органические вещества и состав атмосферы. Инструмент был разработан: Goddard Space Flight Center, Лаборатория Inter-Universitaire, Французскими CNRS и Honeybee Robotics, наряду со многими другими партнёрами.
  • Radiation assessment detector (RAD), «Детектор оценки радиации»: Этот прибор собирает данные для оценки уровня радиационного фона, который будет воздействовать на участников будущих экспедиций к Марсу. Прибор установлен практически в самом «сердце» ровера, и тем самым имитирует астронавта, находящегося внутри космического корабля. RAD был включен первым из научнах инструментов для MSL, ещё на околоземной орбите, и фиксировал радиационный фон внутри аппарата — а затем и внутри ровера во время его работы на поверхности Марса. Он собирает данные об интенсивности облучения двух типов: высокоэнергетических галактических лучей и частиц, испускаемых Солнцем. RAD был разработан в Германии Юго-западным исследовательским институтом (SwRI) внеземной физики в группе Christian-Albrechts-Universität zu Kiel при финансовой поддержке управления Exploration Systems Mission в штаб-квартире НАСА и Германии.
  • Dynamic Albedo of Neutrons (DAN): «Динамическое альбедо нейтронов» (ДАН) используется для обнаружения водорода, водяного льда вблизи поверхности Марса, предоставлен Федеральным Космическим Агентством (Роскосмос). Является совместной разработкой НИИ автоматики им. Н. Л. Духова при «Росатоме» (импульсный нейтронный генератор), Института космических исследований РАН (блок детектирования) и Объединённого института ядерных исследований (калибровка). Стоимость разработки прибора составила около 100 млн рублей. Фото прибора. В состав прибора входят импульсный источник нейтронов и приемник нейтронного излучения. Генератор испускает в сторону марсианской поверхности короткие, мощные импульсы нейтронов. Продолжительность импульса составляет около 1 мкс, мощность потока — до 10 млн нейтронов с энергией 14 МэВ за один импульс. Частицы проникают в грунт Марса на глубину до 1 м, где взаимодействуют с ядрами основных породообразующих элементов, в результате чего, замедляются и частично поглощаются. Оставшаяся часть нейтронов отражается и регистрируется приемником. Точные измерения возможны до глубины 50 - 70 см. Помимо активного обследования поверхности Красной планеты, прибор способен вести мониторинг естественного радиационного фона поверхности (пассивное обследование).
  • Rover environmental monitoring station (REMS): Комплект метеорологических приборов и ультрафиолетовый датчик предоставило Испанское Министерство Образования и Науки. Исследовательская группа во главе с Хавьером Гомес-Эльвира, Центра Астробиологии (Мадрид) включает Финский Метеорологический институт в качестве партнёра. Установили её на мачту камеры для измерения атмосферного давления, влажности, направления ветра, воздушных и наземных температур, ультрафиолетового излучения. Все датчики расположены в трёх частях: две стрелы присоединены к марсоходу, Remote Sensing Mast (RSM), Ultraviolet Sensor (UVS) находится на верхней мачте марсохода, и Instrument Control Unit (ICU) внутри корпуса. REMS даст новые представления о местном гидрологическом состоянии, о разрушительном влиянии ультрафиолетового излучения, о подземной жизни.
  • MSL entry descent and landing instrumentation (MEDLI): Основной целью MEDLI является изучение атмосферной среды. После замедления спускаемого аппарата с марсоходом в плотных слоях атмосферы теплозащитный экран отделился — в этот период были собраны необходимые данные о марсианской атмосфере. Эти данные будут использованы в будущих миссиях, дав возможность определить параметры атмосферы. Также их возможно использовать для изменения конструкции спускаемого аппарата в будущих миссиях на Марс. MEDLI состоит из трёх основных приборов: MEDLI Integrated Sensor Plugs (MISP), Mars Entry Atmospheric Data System (MEADS) и Sensor Support Electronics (SSE).
  • Hazard avoidance cameras (Hazcams): Марсоход имеет две пары чёрно-белых навигационных камеры, расположенных по бокам аппарата. Они используются для избежания опасности во время передвижения марсохода и для безопасного наведения манипулятора на камни и почву. Камеры делают 3D изображения (поле зрения каждой камеры — 120 градусов), составляют карту местности впереди марсохода. Составленные карты позволяют марсоходу избежать случайных столкновений и используются программным обеспечением аппарата для выбора необходимого пути преодоления препятствий.
  • Navigation cameras (Navcams): Для навигации марсоход использует пару чёрно-белых камер, которые установлены на мачте для слежения за передвижением марсохода. Камеры имеют 45 градусное поле зрения, делают 3D изображения. Их разрешение позволяет видеть объект размером в 2 сантиметра с расстояния 25 метров.

Марсоход Curiosity проделал большой путь. Чтобы попасть на Красную планету ему пришлось преодолеть 567 миллионов километров за 8 месяцев. И 6 августа 2012 года он совершил посадку в районе кратера Гейла.
За проведенные на Марсе годы Curiosity отправил на Землю 468 926 снимков, он стрелял лазером, сверлил, сделал бесчисленное количество работ разными инструментами. На счету марсохода множество интересных открытий, в частности, его данные помогли установить, миллиарды лет назад на Марсе существовали благоприятные условия для жизни микробов.

Снимки марсохода Curiosity и новости с Красной планеты за последние несколько лет.

2. С дальнего расстояния поверхность Марса выглядит рыжевато-красной из-за красной пыли, которая содержится в атмосфере. Вблизи цвет - желтовато-коричневый с примесью золотистого, бурого, рыжевато-коричневого и даже зеленого, в зависимости от цвета минералов планеты. В древности люди с легкостью отличали Марс от других планет, а также ассоциировали его с войной и слагали всевозможные легенды. Египтяне называли Марс «Хар Дечер», что означало «красный». (Фото JPL-Caltech | MSSS | NASA):

3. Марсоход Curiosity очень любит делать селфи. Как он это делает, ведь снять его со стороны некому?

У марсохода четыре цветных камеры, все они отличаются разным набором оптики, но только одна из них подходит для селфи. У автоматической руки под названием MAHLI 5 степеней свободы, что дает камере значительную гибкость и позволяет «облететь» марсианский ровер со всех сторон. Движением этой руки-камеры управляет специалист с Земли. Главная задача – следовать определенной последовательности перемещения автоматической руки, чтобы камера могла сделать достаточное количество снимков для последующей склейки панорамы. Сценарий подготовки каждого такого селфи отрабатывают сначала на Земле на специальном тестовом модуле, который носит название Мэгги. (Фото NASA):

4. Марсианский закат, 15 апреля 2015. В полдень небо Марса жёлто-оранжевое. Причина таких отличий от цветовой гаммы земного неба - свойства тонкой, разреженной, содержащей взвешенную пыль атмосферы Марса. На Марсе рэлеевское рассеяние лучей (которое на Земле и является причиной голубого цвета неба) играет незначительную роль, эффект его слаб, но проявляется в виде голубого свечения при восходе и закате Солнца, когда свет проходит более толстый слой воздуха. (Фото JPL-Caltech | MSSS | Texas A&M Univ via Getty | NASA):

5. Колеса марсохода 9 сентября 2012 года. (Фото JPL-Caltech | Malin Space Science Systems | NASA):

6. А это снимок 18 апреля 2016. Видно, как износилась “обувка” у трудяги. С августа 2012 года по январь прошлого года марсоход Curiosity прошёл 15.26 км. (Фото JPL-Caltech MSSS | NASA):

7. Продолжаем смотреть снимки марсохода Curiosity. Дюна Намиб - область с темным песком, состоящая из дюн на северо-западе от горы Шарп. (Фото JPL-Caltech | NASA):

8. Две трети поверхности Марса занимают светлые области, получившие название материков, около трети - тёмные участки, называемые морями. А это подножие горы Шарп.

Шарп - марсианская гора, находящаяся в кратере Гейл. Высота горы составляет около 5 километров. На Марсе же находится и самая высокая гор в Солнечной системе - потухший вулкан Олимп высотой 26 км. Диаметр Олимпа - около 540 км. (Фото JPL-Caltech | MSSS | NASA):

9. Фотография с орбитального аппарата, здесь и марсоход виден. (Фото JPL-Caltech | Univ. of Arizona | NASA):

10. Как сформировался этот необычный холм Иресон на Марсе? Его история стала предметом исследований. Его форма и двухцветная структура делают его одним из самых необычных холмов, около которых проезжал автоматический марсоход. Он достигает высоты около 5 метров, а размер его основания - около 15 метров. (Фото JPL-Caltech | MSSS | NASA0:

11. Так выглядят “следы” марсохода на Марсе. (Фото JPL-Caltech | NASA):

12. Полушария Марса довольно сильно различаются по характеру поверхности. В южном полушарии поверхность находится на 1-2 км выше среднего уровня и густо усеяна кратерами. Эта часть Марса напоминает лунные материки. На севере большая часть поверхности находится ниже среднего уровня, здесь мало кратеров и основную часть занимают относительно гладкие равнины, вероятно, образовавшиеся в результате затопления лавой и эрозии. (Фото JPL-Caltech | MSSS | NASA):

13. На переднем плане, примерно в трех километрах от ровера, находится длинный хребет, изобилующий оксидом железа. (Фото JPL-Caltech | MSSS | NASA):

14. Взгляд на путь, который проделал марсоход, 9 февраля 2014. (Фото JPL-Caltech | MSSS | NASA):

15. Отверстие, которое пробурил марсоход Curiosity. Такой цвет породы под красной поверхностью сразу не очевиден. Дрель марсохода способна делать в камне отверстия диаметром 1.6 см и глубиной 5 см. Добытые манипулятором образцы могут также исследоваться приборами SAM и CheMin, расположенными в передней части корпуса ровера. (Фото JPL-Caltech | MSSS | NASA):

16. Еще одно селфи, самое свежее, сделанное 23 января 2018. (Фото NASA | JPL-Caltech | MSSS):

Итак, как же можно связаться с ровером, находящимся на Марсе? Вдумайтесь - даже когда Марс находится на наименьшем расстоянии от Земли, сигналу нужно преодолеть пятьдесят пять миллионов километров! Это действительно огромное расстояние. Но как же маленькому, одинокому марсоходу удается передавать свои научные данные и прекрасные полноцветные изображения так далеко и в таком количестве? В самом первом приближении, это выглядит примерно вот так (я очень старался, правда):

Итак, в процессе передачи информации участвуют, обычно, три ключевые «фигуры» - один из центров космической связи на Земле, один из искусственных спутников Марса, и собственно, сам марсоход. Давайте начнем со старушки Земли, и поговорим о центрах космической связи DSN (Deep Space Network).

Станции космической связи

Любая из космических миссий NASA рассчитана на то, что связь с космическим аппаратом должна быть возможна 24 часа в сутки (ну или по крайней мере всегда, когда она может быть возможна в принципе ). Поскольку, как нам известно, Земля довольно быстро вращается вокруг собственной оси, для обеспечения непрерывности сигнала необходимо несколько точек для приема/передачи данных. Именно такими точками и являются станции DSN. Они расположены на трех континентах и удалены друг от друга примерно на 120 градусов долготы, что позволяет им частично перекрывать зоны действия друг друга, и, благородя этому, «вести» космический аппарат 24 часа в сутки. Для этого, когда космический аппарат выходит из зоны действия одной из станций, его сигнал перебрасывается ну другую.

Один из комплексов DSN находится в США (Goldstone complex), второй - в Испании (около 60 километров от Мадрида), а третий - в Австралии (примерно в 40 километрах от Канберры).

Каждый из этих комплексов имеет собственный набор антенн, но по функциональности все три центра примерно равны. Сами антенны называются DSS (Deep Space Stations), и имеют собственную нумерацию - антенны в США имеют номера 1X-2X, антенны в Австралии - 3Х-4Х, а в Испании - 5Х-6Х. Так что, если вы услышите где-то «DSS53», то можете быть уверены, что речь идет об одной из испанских антенн.

Для связи с марсоходами чаще всего используется комплекс в Канберре, поэтому давайте поговорим о нем чуть подробнее.

У комплекса есть свой сайт , на котором можно найти довольно много интересной информации. Например, совсем скоро - 13 апреля этого года - исполнится 40 лет антенне DSS43.

Всего, на настоящий момент, станция в Канберре имеет три активные антенны: DSS-34 (диаметром 34 метра), DSS-43 (впечатляющие 70 метров) и DSS-45 (снова 34 метра). Разумеется, за годы работы центра были использованы и другие антенны, которые по разным причинам были выведены из эксплуатации. Например, самая первая антенна - DSS42 - была снята с использования в декабре 2000 года, а DSS33 (диаметром 11 метров) была списана в феврале 2002, после чего перевезена в Норвегию в 2009, чтобы продолжить свою работу уже в роли инструмента для изучения атмосферы.

Первая из упомянутых работающих антенн, DSS34 , была построена в 1997 году и стала первым представителем нового поколения этих устройств. Ее отличительной особенностью является то, что оборудование для приема/передачи и обработки сигнала находится не непосредственно на тарелке, а в помещении под ней. Это позволило значительно облегчить тарелку, а также дало возможность обслуживать оборудования не останавливая работу самой антенны. DSS34 является антенной-рефлектором, схема ее работы выглядит примерно так:

Как видите, под антенной располагается помещение, в котором и проводится вся обработка полученного сигнала. У реальной антенны, эта комната находится под землей, так что на фотографиях вы ее не увидите.


DSS34, кликабельно

Передача:

  • X-диапазон (7145-7190 МГц)
  • S-диапазон (2025-2120 МГц)
Прием:
  • X-диапазон (8400-8500 МГц)
  • S-диапазон (2200-2300 МГц)
  • Ka-диапазон (31.8-32.3 ГГц)
Точность позиционирования: Скорость поворота:
  • 2.0°/сек
Устойчивость к ветру:
  • Постоянный ветер 72км/ч
  • Порывы +88км/ч

DSS43 (у которой скоро юбилей) представляет собой гораздо более старый экземпляр, построенный в 1969-1973 годах, и претерпевший модернизацию в 1987 году. DSS43 - это самая большая подвижная параболическая антенна в южном полушарии нашей планеты. Массивная конструкция весом более 3000 тонн поворачивается на масляной пленке толщиной около 0.17 миллиметра. Поверхность тарелки состоит из 1272 алюминиевых панелей, и имеет площадь 4180 квадратных метров.

DSS43, кликабельно

немного технических характеристик

Передача:

  • X-диапазон (7145-7190 МГц)
  • S-диапазон (2025-2120 МГц)
Прием:
  • X-диапазон (8400-8500 МГц)
  • S-диапазон (2200-2300 МГц)
  • L-диапазон (1626-1708 МГц)
  • K-диапазон (12.5 ГГц)
  • Ku-диапазон (18-26 ГГц)
Точность позиционирования:
  • в пределах 0.005° (точность наводки на точку небосвода)
  • в пределах 0.25мм (точность перемещения самой антенны)
Скорость поворота:
  • 0.25°/сек
Устойчивость к ветру:
  • Постоянный ветер 72км/ч
  • Порывы +88км/ч
  • Максимальная расчетная - 160км/ч

DSS45 . Эта антенна была закончена в 1986 году, и предназначена изначально для связи с Voyager 2, изучавшим Уран. Она вращается на круглом основании диаметром в 19.6 метра, используя для этого 4 колеса, два из которых являются ведущими.

DSS45, кликабельно

немного технических характеристик

Передача:

  • X-диапазон (7145-7190 МГц)
Прием:
  • X-диапазон (8400-8500 МГц)
  • S-диапазон (2200-2300 МГц)
Точность позиционирования:
  • в пределах 0.015° (точность наводки на точку небосвода)
  • в пределах 0.25мм (точность перемещения самой антенны)
Скорость поворота:
  • 0.8°/сек
Устойчивость к ветру:
  • Постоянный ветер 72км/ч
  • Порывы +88км/ч
  • Максимальная расчетная - 160км/ч

Если говорить о станции космической связи в целом, то можно выделить четыре основные задачи, которые она должна выполнять:
Телеметрия - получать, декодировать и обрабатывать данные телеметрии, поступающие с космических аппаратов. Обычно эти данные состоят из научной и инженерной информации, передаваемой по радиоканалу. Система телеметрии получает данные, следит за их изменениями и соответствием норме, и передает их в системы валидации или научные центры, занимающиеся их обработкой.
Слежение - система слежения должна обеспечивать возможность двусторонней коммуникации между Землей и космическим аппаратом, и проводить расчеты его местоположения и вектора скорости для правильного позиционирования терелки.
Управление - дает специалистам возможность передавать управляющие команды на космический аппарат.
Мониторинг и контроль - позволяю контролировать и управлять системами самой DSN

Стоит отметить, что австралийская станция обслуживает на сегодняшний день около 45 космических аппаратов, так что расписание времени ее работы четко регламентировано, и получить дополнительное время не так-то просто. У каждой из антенн также имеется техническая возможность обслуживать до двух разных аппаратов одновременно.

Итак, данные, которые должны быть переданы на ровер, присылают на станцию DSN, откуда они отправляются в свое недолгое (от 5 до 20 минут) космическое путешествие к Красной Планете. Давайте теперь перейдем к рассмотрению самого ровера. Какие средства связи имеются у него?

Curiosity

Curiosity оснащен тремя антеннами, каждая из которых может использоваться и для приема и для передачи информации. Это UHF-антенна, LGA и HGA. Все они расположены на «спине» ровера, в различных местах.


HGA - High Gain Antenna
MGA - Medium Gain Antenna
LGA - Low Gain Antenna
UHF - Ultra High Frequency
Поскольку аббревиатуры HGA, MGA и LGA уже имеют в себе слово antenna, я не буду приписывать к ним это слово повторно, в отличие от аббревиатуры UHF.


Нас интересуют RUHF, RLGA, и High Gain Antenna

UHF-антенна используется чаще всего. С ее помощью, ровер может передавать данные через спутники MRO и Odyssey (о которых мы поговорим дальше) на частоте около 400 мегагерц. Использование спутников для передачи сигнала является предпочтительным из-за того, что они находятся в поле зрения DSN-станций гораздо дольше, чем сам ровер, одиноко сидящий на поверхности Марса. К тому же, поскольку они значительно ближе к марсоходу, последнему нужно затрачивать меньше энергии для передачи данных. Скорость передачи может достигать 256кб/с для Odyssey и до 2 мбит/с для MRO. Бо льшая часть информации, приходящей от Curiosity, проходит именно через спутник MRO. Сама UHF-антенна находится в задней части ровера, и внешне выглядит как серый цилиндр.

Curiosity также имеет HGA, которую он может использовать для получения команд напрямую с Земли. Эта антенна подвижна (ее можно направить в сторону Земли), то есть для ее использования роверу не приходится менять свое местоположение, достаточно просто повернуть HGA в нужную сторону, а это позволяет сохранять энергию. HGA смонтирована примерно посередине с левого борта ровера, и представляет собой шестигранник диаметром около 30 сантиметров. HGA может передавать данные прямо на Землю со скоростью около 160 бит/сек на 34-метровые антенны, или со скоростью до 800 бит/сек на 70-метровые.

Наконец, третья антенна - это так называемая LGA.
Она посылает и принимает сигналы в любых направлениях. Работает LGA в X-диапазоне (7-8 ГГц). Тем не менее, мощность этой антенны довольно мала, а скорость передачи оставляет желать лучшего. Из-за этого она в основном используется для приема информации, а не для ее передачи.
На фото LGA - это белая башенка на переднем плане.
На заднем плане видна UHF-антенна.

Стоит отметить, что марсоход генерирует огромное количество научных данных, и не всегда все их удается отправить. Специалисты NASA устанавливают приоритеты важности: информация с наибольшим приоритетом будет передана в первую очередь, а информация с меньшим приоритетом будет ждать следующего коммуникационного окна. Иногда часть наименее важных данных и вовсе приходится удалять.

Спутники Odyssey и MRO

Итак, мы выясняли, что обычно для связи с Curiosity необходимо «промежуточное звено» в виде одного из спутников. Благодаря этому удается увеличить время, в течение которого связь с Curiosity вообще возможна, а также увеличить скорость передачи, так как более мощные антенны спутников способны передавать на Землю данные с гораздо большей скоростью.

Каждый из спутников имеет два коммуникационных окна с марсоходом в каждый сол. Обычно эти окна достаточно коротки - всего несколько минут. В случае крайней необходимости, Curiosity может также связаться со спутником Европейского Космического Агентства Mars Express Orbiter.

Mars Odyssey


Mars Odyssey
Спутник Mars Odyssey был запущен в 2001 году и предназначен изначально для изучения строения планеты и поиска минералов. Спутник имеет размеры 2,2х2,6х1,7 метра и массу более 700 килограмм. Высота его орбиты колеблется от 370 до 444 километров. Этот спутник активно использовался предыдущими марсоходами: около 85 процентов данных, полученных со Spirit и Opportunity, были транслированы именно через него. Odyssey может общаться с Curiosity в UHF-диапазоне. Что касается средств коммуникации, у него имеются HGA, MGA (medium gain antenna), LGA и UHF-антенна. В основном, для передачи данных на Землю используется HGA, имеющая диаметр 1.3 метра. Передача ведется на частоте 8406 МГц, а прием данных осуществляется на частоте 7155 МГц. Угловой размер луча составляет порядка двух градусов.


Расположение инструментов спутника

Коммуникации с роверами осуществляются с помощью UHF-антенны на частотах 437 МГц (передача) и 401 МГц (прием), скорость обмена данными может составлять 8, 32, 128 или 256 кб/сек.

Mars Reconnaissance Orbiter


MRO

В 2006 году к спутнику Odyssey присоединился MRO - Mars Reconnaissance Orbiter, который сегодня является основным собеседником Curiosity.
Однако, помимо работы связиста, сам MRO имеет внушительный арсенал научных приборов, и, что самое интересное, оборудован камерой HiRISE, которая представляет собой, по сути, телескоп-рефлектор. Находясь на высоте 300 километров, HiRISE может делать снимки с разрешением до 0.3 метра на пиксель (для сравнения, спутниковые снимки Земли обычно доступны с разрешением около 0.5 метра на пиксель). MRO может также создавать стереопары поверхности с точностью до умопомрачительных 0.25 метров. Я настоятельно рекомендую вам ознакомиться хотя бы с несколькими снимками, которые доступны, например, . Чего стоит, например, вот это изображение кратера Виктория (кликабельно, оригинал около 5 мегабайт):


Предлагаю самым внимательным найти на изображении ровер Opportunity ;)

ответ (кликабельно)

Обратите внимание на то, что большинство цветных снимков сделаны в расширенном диапазоне, так что если вы наткнетесь на снимок, на котором часть поверхности будет ярко сине-зеленоватого цвета, не спешите заниматься конспирологией;) Зато вы можете быть точно уверены, что на разных снимках одинаковые породы будут иметь одинаковый цвет. Однако, вернемся к системам связи.

MRO оборудован четырьмя антеннами, которые по назначению совпадают с антеннами марсохода - это UHF-антенна, HGA и две LGA. Основная используемая спутником антенна - HGA - имеет диаметр три метра, и работает в X-диапазоне. Именно она используется для передачи данных на Землю. HGA также оборудована 100-ваттным усилителем сигнала.


1 - HGA, 3 - UHF, 10 - LGA (обе LGA смонтированны прямо на HGA)

Curiosity и MRO общаются с помощью UHF-антенны, коммуникационное окно открывается дважды в сол, и продолжается примерно 6-9 минут. MRO выделяет 5Гб в день для данных, полученных с роверов, и хранит их до тех пор, пока не окажется в зоне видимости одной из станций DSN на Земле, после чего передает данные туда. Передача данных к марсоходу осуществляется по такому же принципу. На хранение команд, которые должны быть переданы на марсоход, выделяется 30 Мб/сол.

Станции DSN ведут MRO по 16 часов в сутки (остальные 8 часов спутник находится с обратной стороны Марса, и не может вести обмен данными, так как закрыт планетой), 10-11 из которых он передает данные на Землю. Обычно спутник в течение трех дней в неделю работает с 70-метровой антенной DSN, и дважды - с 34-метровой антенной (к сожалению непонятно чем он занимается в оставшиеся два дня, но вряд ли у него есть выходные). Скорость передачи может варьироваться от 0,5 до 4 мегабит в секунду - она уменьшается при отдалении Марса от Земли и увеличивается при сближении двух планет. Сейчас (на момент публикации статьи) Земля и Марс находятся почти на максимальном расстоянии друг от друга, так что скорость передачи скорее всего не очень велика.

NASA утверждает (на сайте спутника есть специальный виджет), что за все время работы MRO передал на Землю более 187 терабит (!) данных - это больше, чем все аппараты, посланные в космос до него, вместе взятые.

Заключение

Итак, подведем итоги. При передаче управляющих команд на марсоход, происходит следующее:
  • Специалисты JPL отправляют команды на одну из станций DSN.
  • Во время сеанса связи с одним из спутников (скорее всего, это будет MRO), станция DSN передает ему набор команд.
  • Спутник сохраняет данные во внутренней памяти, и ожидает следующего коммуникационного окна с марсоходом.
  • Когда марсоход оказывается в зоне доступа, спутник передает ему управляющие команды.

При передаче данных с марсохода на Землю, все это происходит в обратном порядке:

  • Ровер хранит свои научные данные во внутренней памяти и ожидает ближайшего коммуникационного окна со спутником.
  • Когда спутник оказывается доступен, ровер передает ему информацию.
  • Спутник получает данные, сохраняет их в своей памяти, и ожидает доступности одной из станций DSN
  • Когда станция DSN становится доступна, спутник отправляет ей полученные данные.
  • Наконец, после получения сигнала, станция DSN декодирует его, и отправляет полученные данные тем, для кого они предназначены.

Надеюсь, мне удалось более-менее кратко описать процесс связи с Curiosity. Вся эта информация (на английском языке; плюс огромная куча дополнительной, включая, например, довольно подробные технические отчеты о принципах работы каждого из спутников) доступна на различных сайтах JPL, ее очень легко найти, если знать, что именно вас интересует.

Пожалуйста, сообщайте о всех ошибках и опечатках в личку!

Только зарегистрированные пользователи могут участвовать в опросе. Войдите , пожалуйста.

6 августа 2012 года на поверхность Марса десантировался аппарат «Любопытство» (Curiosity). В следующие 23 месяца марсоход будет изучать поверхность планеты, её минералогический состав и спектр излучения, искать следы жизни, а также оценит возможность высадки человека.

Основная тактика исследований состоит в поиске интересных пород камерами высокого разрешения. Если таковые появляются, то марсоход издалека облучает лазером исследуемую породу. Результат спектрального анализа определяет, нужно ли доставать манипулятор с микроскопом и рентгеновским спектрометром. Далее «Кьюриосити» может извлечь и загрузить образец во одну из 74 чашечек внутренней лаборатории для дальнейшего анализа.

При всем своем большом обвесе и внешней легкости аппарат имеет массу легкового автомобиля (900 кг) и весит на поверхности Марса 340 кг. Для запитывания всего оборудоваения используется энергия распада плутония-238 от радиоизотопного термоэлектрического генератора компании «Боинг», ресурс которого составляет как минимум 14 лет. На данный момент он вырабатывает 2,5 квт·ч тепловой энергии и 125 Вт электрической, со временем выход электричества будет снижаться до 100 Вт.

На марсоходе установлено сразу несколько различных типов камер . Mast Camera - это система из двух неодинаковых камер обычной цветопередачи, которые могут делать снимки (в том числе стереоскопические) разрешением 1600×1200 пикселов и, что ново для марсоходов, записывать аппаратно сжатый 720p-видеопоток (1280×720). Для хранения полученного материала система имеет 8 гигабайт флэш-памяти для каждой из камер - этого достаточно, чтобы уместить несколько тысяч снимков и пару часов видеозаписи. Обработка фотографий и видеороликов идет без нагрузки на управляющую электронику «Кьюриосити». Несмотря на наличие у производителя конфигурации с трансфокатором, камеры не имеют зума, поскольку времени для тестирования не оставалось.


Иллюстрация изображений от MastCam. Красочные панорамы поверхности Марса получаются путем склейки уже нескольких изображений. Камеры MastCam будут использоваться не только для развлечения публики погодой красной планеты, но и в качестве помощи при извлечении образцов манипулятором и при перемещении.

Также на мачте закреплена часть системы ChemCam . Это лазерно-искровой эмиссионный спектрометр и блок формирования изображения, которые работают в паре: после испарения крошечного количества исследуемой породы 5-наносекундным импульсом лазера производится анализ спектра полученного плазменного излучения, что позволит определить элементный состав образца. При этом не нужно выдвигать манипулятор.

Разрешающая способность оборудования в 5-10 раз выше, чем у установленного на предыдущие марсоходы. С 7 метров ChemCam может определить тип изучаемой породы (например, вулканическая или осадочная), структуру грунта и камней, отследить преобладающие элементы, распознать лед и минералы с водными молекулами в кристаллической структуре, измерить следы эрозии на камнях и визуально помочь при исследовании пород манипулятором.

Стоимость ChemCam составила 10 млн. долларов (менее полупроцента всей стоимости экспедиции). Система состоит из лазера на мачте и трех спектрографов внутри корпуса, излучение к которым подводится по оптоволоконному световоду.

На манипуляторе марсохода установлена Mars Hand Lens Imager, способная получать снимки размером в 1600×1200 пикселов, на которых могут быть видны детали в 12,5 микрометров. Камера имеет белую подсветку для работы как днем, так и ночью. Ультрафиолетовая подсветка необходима для вызова излучения карбонатных и эвапоритных минералов, наличие которых позволяет говорить о том, что в формировании поверхности Марса принимала участие вода.

Для целей картографирования использовалась камера Mars Descent Imager (MARDI), которая во время спуска аппарата записывала снимки размером 1600×1200 пикселов на 8 гигабайт флэш-памяти. Как только до поверхности осталось несколько километров, камера начала делать пять цветных фотографий в секунду. Полученные данные позволят составить карту ареала обитания «Кьюриосити».

По бокам марсохода установлены две пары черно-белых камер с углом обзора 120 градусов. Система Hazcams используется при выполнении маневров и выдвижении манипулятора. На мачте расположена система Navcams, которая представляют из себя две черно-белые камеры с углом обзора 45 градусов. Программы марсохода постоянно строят клиновидную 3D-карту на основе данных этих камер, что позволяет избегать столкновений с неожиданными препятствиями. Один из первых снимков с «Кьюриосити» - это картинка именно с камеры Hazcam.

Для измерения погодных условий на марсоходе установлена станция мониторинга окружающей среды (Rover Environmental Monitoring Station), которая измеряет давление, температуры атмосферы и поверхности, скорость ветра и ультрафиолетовое излучение. REMS защищена от марсианской пыли.