Меню
Бесплатно
Главная  /  Психология  /  Когерентные световые волны. Когерентные волны. интерференция волн

Когерентные световые волны. Когерентные волны. интерференция волн

Cтраница 1


Когерентные волны, выходящие из кристаллической пластинки В (рис. 34.10), не могут интерферировать, так как они поляризованы во взаимно перпендикулярных плоскостях. Анализатор выделяет из падающих на него когерентных волн составляющие, поляризованные в одной плоскости, и, таким образом, создаст условия, необходимые для осуществления интерференции этих волн.  

Когерентные волны - волны одинаковой частоты, колебания в которых отличаются постоянной разностью фаз, не изменяющейся во времени, достаточном для наблюдения.  

Когерентные волны - волны одинаковой частоты, колебания в которых отличаются постоянной разностью фаз, не изменяющейся со временем.  

Когерентные волны двух когерентных источпнкон света могут складываться, или интерферировать. И результате интерференции происходит либо усиление, либо ослабление световых колебаний и образуются интерференционные полосы.  

Когерентные волны, выходящие из кристаллической пластинки В (рис. 34.10), не могут интерферировать, так как они поляризованы во взаимно перпендикулярных плоскостях. Анализатор выделяет из падающих на него когерентных волн составляющие, поляризованные в одной плоскости, и таким образом создает условия, необходимые для осуществления интерференции этих волн. Результат интерференции зависит от разности фаз Др, приобретенной обыкновенной и необыкновенной волнами в пластинке, от соотношения амплитуд этих волн и угла ft между главными плоскостями анализатора и поляризатора.  

Когерентные волны можно получить, если источники волн связаны и совершают колебания совместно, например, если волны вызываются двумя стерженьками, погруженными в воду в точках G.  

Когерентные волны, выходящие из кристаллической пластинки К, не могут интерферировать, так как они поляризованы во взаимно перпендикулярных плоскостях.  

Когерентные волны получаются посредством разделения пучка света от одного источника на два или несколько отдельных пучков. На рис. 400 показаны два способа получения когерентных световых пучков.  

Когерентные волны, выходящие из кристаллической пластинки К, не могут интерферировать, так как они поляризованы во взаимно перпендикулярных плоскостях. Анализатор, разлагая приходящие к нему когерентные волны, поляризованные во взаимно перпендикулярных плоскостях и обладающие определенными разностями фаз Дф -, выделяет из них составляющие, которые поляризованы в одной плоскости, и тем самым создает условия, необходимые для осуществления интерференции этих волн.  

Когерентные колебания (когерентные волны) - два колебания, разность фаз между которыми не меняется со временем. Для этого необходимо, во-первых, чтобы частоты этих колебаний были точно равны, и, во-вторых, чтобы фаза каждого из этих колебаний не испытывала каких-либо изменений, отличных от изменений фазы другого колебания. Понятие когерентности относится не только к колебаниям, но и к волнам. Если колебания напряженности электрических (и магнитных) полей в двух волнах когерентны, то эти волны являются когерентными Например, две волны, пришедшие в данную точку от одного и того же передатчика, но различными путями, являются когерентными, если разность хода этих двух волн не меняется со временем. Вопрос о когерентности колебаний и волн играет принципиальную роль в явлении интерференции волн.  

Когерентные колебания (когерентные волны) - два колебания, разность фаз между которыми не меняется со временем. Для этого необходимо, во-первых, чтобы частоты этих колебаний были точно равны и, во-вторых, чтобы фаза каждого из этих колебаний не испытывала каких-либо изменений, отличных от изменений фазы другого колебания.  

Для образования устойчивой интерференционной картины необходимо, чтобы источники волн имели одинаковую частоту и разность фаз их колебания была постоянной. Источники, удовлетворяющие этому условию, называются когерентными* .

  • От латинского слова cohaereus - взаимосвязанный.

Волны таких источников также называются когерентными .

Когерентность волн бывает временной и пространственной. Источники, у которых разность фаз остается постоянной, называются когерентными. Наиболее простой способ создать когерентные источники – это использовать реальный источник и его изображение. Существуют различные способы создания когерентных источников. Основные схемы наблюдения интерференции в немохроматическом свете используют деление волнового фронта (обычно от точечного источника) или деление амплитуды волны. При этом создаются две когерентных волны, которые интерферируют при небольшой разности хода.

Согласованность волн, которая заключается в том, что разность фаз остается неизменной с течением времени для любой точки пространства называется временной когерентностью .

Согласованность волн, которая заключается в том, что разность фаз остается постоянной в разных точках волновой поверхности, называется пространственной когерентностью .

Реальные источники практически не могут быть когерентными.

См. также

  • Когерентные сигналы

Wikimedia Foundation . 2010 .

Смотреть что такое "Когерентные волны" в других словарях:

    когерентные волны - Волны, разность фаз которых не зависит от времени. [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.] Тематики виды (методы) и технология неразр.… …

    когерентные волны - koherentinės bangos statusas T sritis fizika atitikmenys: angl. coherent waves vok. kohärente Wellen, f rus. когерентные волны, f pranc. ondes cohérentes, f … Fizikos terminų žodynas

    когерентные волны - (связанные волны) волны одинаковой частоты, колебания в которых отличаются постоянной разностью фаз, не изменяющейся со временем … Русский индекс к Англо-русскому словарь по музыкальной терминологии

    когерентные световые волны - Световые волны, имеющие постоянную разность фаз световых колебаний в течение данного отрезка времени. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики… … Справочник технического переводчика

    ВОЛНЫ - (1) (см.), распространяющиеся с конечной скоростью в пространстве и несущие с собой энергию без переноса вещества; (2) В. де Бройля проявляются при движении любой микрочастицей и отражают одновременное сочетание волновых и корпускулярных свойств… … Большая политехническая энциклопедия

    Электромагнитное поле, распространяющееся в пространстве с конечной скоростью, зависящей от свойств среды. В вакууме скорость распространения электромагнитной волны с≈300 000 км/с (см. Скорость света). В однородных изотропных средах направления… … Энциклопедический словарь

    - (от латинского cohaerens находящийся в связи) согласованное протекание во времени нескольких колебательных или волновых процессов, проявляющееся при их сложении. Колебания называются когерентными, если разность их фаз остаётся постоянной… … Большая советская энциклопедия

    Картина интерференции двух круговых когерентных волн, в зависимости от длины волны и расстояния между источниками Интерференция волн наложение волн, при котором происходит их взаимное усиление в одних точках пространства и ослабление – в других.… … Википедия

Монохроматическая плоская электромагнитная волна описывается следующим выражением для напряженности поля в любой точке пространства, определяемой радиус-вектором r :

где Е 0 , , и являются постоянными величинами. Однако всякая реальная световая волна образуется наложением колебаний различных частот, заключенных в конечном интервале . Согласно формуле разбросу частот соответствует разброс значений волнового числа . Следует отметить, что разброс волнового вектора может быть связан также с разбросом направлений распространения волн, который характеризуется векторной величиной .

Сначала обсудим временную когерентность , которая связана с разбросом частот . Рассмотрим случай наложения в некоторой точке пространства двух световых колебаний с несколько различающимися частотами :

Интерференционный член

при сделанных предположениях будет зависеть от времени и разности частот

Всякий оптический прибор, с помощью которого наблюдается интерференция света (фотопленка, человеческий глаз и др.), обладает определенной инертностью, которая характеризуется временем регистрации прибором интерференционной картины. При этом оптический прибор регистрирует картину, усредненную по промежутку времени . Если за это время косинус в интерференционном члене

с равной вероятностью принимает все значения от –1 до +1 , то среднее значение интерференционного члена будет равно нулю. Интерференционная картина не будет видна, то есть регистрируемая прибором интенсивность окажется равной сумме интенсивностей, создаваемых в данной точке каждой волной в отдельности. Если же за время значение косинуса остается практически неизменным, то прибор зарегистрирует интерференцию. Таким образом, для характеристики когерентных свойств световых волн вводится время когерентности , которое определяется как время, за которое изменение разности фаз волн, накладывающихся в данной точке пространства, достигает значения :

прибор не зафиксирует интерференцию, а при

прибор обнаружит интерференционную картину. За время когерентности волна распространяется на расстояние

называемое длиной когерентности .

Для наблюдения интерференционной картины обычно используют пучки света от одного источника, но прошедшие разные расстояния до точки наблюдения. Это означает, что интерферируют волны, испущенные источником в разное время. Если частота источника «плавает», то при разности хода волн до точки наблюдения разница во времени испускания волн будет , что означает невозможность наблюдения интерференции.

В качестве примера укажем типичные значения длины когерентности для естественного оптического источника с узкополосным светофильтром с шириной полосы пропускания вблизи середины видимого диапазона ( нм ) и для газового лазера - источника оптического излучения с высокой временной когерентностью, для которого ширина полосы на два-три порядка меньше. В первом случае оценка длины когерентности даёт значение

а во втором случае - для лазера -

Таким образом, наблюдение интерференционной картины от обычных оптических источников возможно лишь при малых разностях хода волн, например, при интерференции в тонких пленках, в то время как использование лазерного излучения существенно упрощает эту задачу.

В идеализированном случае при наложении монохроматических воли со строго фиксированными и равными частотами () время и длина когерентности становятся бесконечно большими, поэтому, естественно, в таких условиях интерференционная картина наблюдалась бы при любых разностях хода.

Изменение разности фаз колебаний может происходить не только из-за разбросa частот , но и вследствие разброса волновых векторов . Поэтому наряду с временной когерентностью, определяемой временем когерентности, вводится понятие пространственной когерентности . Возникновение в некоторой точке пространства колебаний, возбуждаемых волнами с целым набором различных по направлению векторов , имеет место, если эти волны испускаются различными участками протяженного источника света.

Рассмотрим для определенности светящийся диск АВ, который из точки М виден под углом (рис. 4.1)

Рис. 4.1. Пространственная когерентность света от протяженного источника:
угол характеризует разброс волновых векторов Ак

Угол характеризует разброс волновых векторов . Таким образом, в фазу электромагнитной волны

надо подставить выражения:

где - проекция радиус-вектора r на направление вектора . В формулах (4.7) и ниже предполагается, что . Вектор , как видно из рисунка, можно считать параллельным протяженному источнику, и, соответственно, фронту волны.

1. Две волны называются когерентными, если разность их фаз не зависит от времени. Этому условию удовлетворяют монохроматические волны, частоты которых одинаковы.

Две волны называются когерентными, если разность их фаз изменяется с течением времени. Монохроматические волны различных частот, а также волны, состоящие из ряда групп - цугов волн, начинающихся и обрывающихся независимо друг от друга со случайными значениями фаз в моменты начала и обрыва каждой группы, являются когерентными.

2. При наложении двух волн, линейно поляризованных в одной плоскости, амплитуда А результирующей волны связана с амплитудами и и фазами и суперпонируемых волн в рассматриваемой точке волнового поля соотношением:

В случае наложения некогерентных волн с различными частотами и амплитуда А - периодическая функция времени с периодом Если, как это обычно имеет место в оптических опытах, наименьшая возможная продолжительность наблюдений, то в эксперименте может быть зарегистрировано лишь среднее значение квадрата амплитуды результирующей волны: Следовательно, при наложении некогерентных волн наблюдается суммирование их интенсивностей:

3. В случае наложения когерентных волн, линейно поляризованных в одной плоскости, где и - начальные фазы суперпонируемых волн в рассматриваемой точке поля. Амплитуда А результирующей волны не зависит от времени и изменяется от точки к точке поля в зависимости от значения где

Максимальная и минимальная интенсивности результирующей волны соответственно равны:

Если, то и т.е. вдвое превосходит сумму интенсивности суперпонируемых когерентных волн.

4. В результате наложения когерентных волн, линейно поляризованных в одной плоскости, происходит ослабление или усиление интенсивности света в зависимости от соотношения фаз складываемых световых волн. Это явление называется интерференцией света. Результат наложения когерентных волн, наблюдаемый на экране, фотопластинке и т.д., называется интерференционной картиной. При наложении некогерентных волн имеет место только усиление света, т.е. интерференция не наблюдается.

5. Каждый атом или молекула источника света излучает цуг волн в течение промежутка времени порядка. Продолжительность цуга имеет величину порядка длин волн, так что в первом приближении каждый такой цуг можно считать квазимонохроматичным. Однако при спонтанном излучении, которое осуществляется в обычных источниках света, электромагнитные волны испускаются атомами (молекулами) вещества независимо друг от друга, со случайными значениями начальных фаз. Поэтому за время ф наблюдения в оптических опытах волны, спонтанно излучаемые атомами (молекулами) любого источника света, некогерентны и при наложении не интерферируют.

Наряду со спонтанным излучением возможен другой тип излучения - индуцированное (вынужденное) излучение, возникающее под действием переменного внешнего электромагнитного поля. Индуцированное излучение когерентно с возбуждающим его монохроматическим излучением. Оно обладает той же частотой направлением распространения и поляризацией. Эти особенности индуцированного излучения используются в квантовых генераторах - мазерах и лазерах.

6. Для получения когерентных световых волн и наблюдения их интерференции с помощью обычных источников спонтанного излучения применяют метод расщепления волны, излучаемой одним источником света, на две или большее число систем волн, которые после прохождения различных путей накладываются друг на друга. В каждых двух таких системах волн имеются попарно когерентные между собой и одинаково поляризованные цуги, соответствующие одним и тем же актам излучения атомов источника. Результат интерференции указанных систем волн зависит от разности фаз, приобретаемой когерентными цугами волн вследствие прохождения ими различных расстояний от источника до рассматриваемой точки интерференционной картины.

7. На рис.1 изображена принципиальная схема интерференционных установок, в которых свет от источника S с линейным размером 2b, малым по сравнению с длиной волны, расщепляется на две системы когерентных волн с помощью зеркал, призм и т.д. Здесь и - источники когерентных волн (действительные или мнимые изображения источника S в оптической системе установки), - апертура интерференции, т.е. угол в точке S между крайними лучами, которые после прохождения через оптическую систему сходятся в точке M - центре интерференционной картины на экране EE, угол схождения лучей в точке M.

8. Обычно S имеет вид щели, параллельной плоскости симметрии оптической системы. При EE|| интерференционная картина представляет собой полосы, параллельные щели.

В обозначениях =2l, OM=D, MN=h распределение интенсивностей в интерференционной картине для монохроматической волны

имеет максимумы при:

и минимумы при:

где m - целое число, называемое порядком интерференции, а

Интенсивность в точке М (при h=0).

9. Расстояние между соседними максимумами или минимумами ():

Величина В называется шириной интерференционной полосы. Интерференционная картина тем крупнее, чем меньше 2l (или щ). Угловая ширина полос интерференции:

10. Если размеры источника, то наблюдается отчётливая интерференционная картина. Практически, и интерференционная картина определяется наложением расщеплённых когерентных волн от разных точек источника. Интерференционная картина остаётся отчётливой при приближенном условии:

где 2 - апертура интерференции, л - длина волны.

11. Контрастность интерференционной картины определяется из формулы:

где Emax, Emin - освещённости экрана в местах максимумов и минимумов картины, т.е. в центрах светлых и тёмных полос, B=лD/2l - ширина интерференционной полосы, 2b - размеры источника. Величина v называется видимостью полос. Зависимость v=f(2b/B) показана на рис.2.

12. Интерференционная картина в немонохроматическом свете, длины волн которого лежат в интервале от л до, полностью смазывается, когда с интерференционными максимумами m-го порядка для излучения с длиной волны совпадают максимумы (m+1)-го порядка для излучения с длиной волны л:

Для наблюдения интерференции порядка m должно выполняться условие:

Чем больше порядок интерференции m, который необходимо наблюдать, тем монохроматичнее должен быть свет. Даже для света с линейчатым спектром не может быть меньше естественной ширины спектральной линии. Обычно из-за доплеровского и ударного уширения.

Лекция 13. Интерференция света

Модуль 2.3 Волновая оптика

Основные понятия : интерференция волн, когерентность, оптическая разность хода, разность фаз колебаний, ширина интерференционной полосы, полосы равного наклона, полосы равной толщины.

План лекции

1. Интерференция волн. Принцип суперпозиции для волн. Когерентные волны.

2. Интерференция света от двух точечных источников.

3. Простые интерференционные схемы.

4. Полосы равного наклона и равной толщины. Отражение от тонких пленок и плоскопараллельных пластинок. Кольца Ньютона. Интерферометры.

Краткое содержание

Волновые свойства света наиболее отчетливо обнаруживают себя в интерференции и дифракции. Эти явления характерны для волн любой природы и сравнительно просто наблюдаются на опыте для волн на поверхности воды или для звуковых волн. Наблюдать же интерференцию и дифракцию световых волн можно лишь при определенных условиях. Свет, испускаемый обычными (нелазерными) источниками, не бывает строго монохроматическим. Поэтому для наблюдения интерференции свет от одного источника нужно разделить на два пучка и затем наложить их друг на друга. Существующие экспериментальные методы получения когерентных пучков из одного светового пучка можно разделить на два класса.

В методе деления волнового фронта пучок пропускается, например, через два близко расположенных отверстия в непрозрачном экране. Такой метод пригоден лишь при достаточно малых размерах источника.

В другом методе пучок делится на одной или нескольких частично отражающих, частично пропускающих поверхностях. Этот метод деления амплитуды может применяться и при протяженных источниках.

Если частоты волн одинаковые, то зависимость от времени будет определяться только разностью начальных фаз колебаний и , каждая из которых в волнах от независимых источников случайным (хаотичным) образом меняется во времени. Если удастся каким либо образом согласовать колебания так, чтобы эта разность не зависела от времени, или медленно менялась во времени, то интенсивность результирующей волны уже не будет равна сумме интенсивностей падающих волн и можно записать:

Такие «согласованные» по фазе волны называют когерентными.

Таким образом, две волны будут когерентными, если слагаемое , описывающее перераспределение интенсивности в пространстве, не обращается в нуль.

Когерентными являются, например, одинаково поляризованные волны, если их частоты одинаковы, а разность начальных фаз не зависит от времени. Так как начальная фаза каждого цуга волн – случайная функция времени, то для получения когерентных колебаний необходимо как-то разделить одну световую волну от источника на две, и тогда разность начальных фаз будет равна нулю. Знак усреднения можно снять и записать


где. Величину можно рассматривать как разность расстояний, пройденных волнами от источника до места встречи. Эту разность, умноженную на показатель преломления среды, называют оптической разностью хода , а - разностью их фаз в момент встречи. Таким образом, в зависимости от разности фаз или, что тоже самое, в зависимости от разности хода интенсивность в различных точках пространства может изменяться от минимального значения