Меню
Бесплатно
Главная  /  Семья и отношения  /  Что значит "фаза колебаний". Начальная фаза. Сдвиг фаз

Что значит "фаза колебаний". Начальная фаза. Сдвиг фаз

Колебательные процессы - важный элемент современной науки и техники, поэтому их изучению всегда уделялось внимание, как одной из “вечных” проблем. Задача любого знания - не простое любопытство, а использование его в повседневной жизни. А для этого существуют и ежедневно появляются новые технические системы и механизмы. Они находятся в движении, проявляют свою сущность, выполняя какую-нибудь работу, либо, будучи неподвижными, сохраняют потенциальную возможность при определенных условиях перейти в состояние движения. А что есть движение? Не углубляясь в дебри, примем простейшее толкование: изменение положения материального тела относительно любой системы координат, которую условно считают неподвижной.

Среди огромного количества возможных вариантов движения особый интерес представляет колебательное, которое отличается тем, что система повторяет изменение своих координат (или физических величин) через определенные промежутки времени - циклы. Такие колебания называются периодическими или циклическими. Среди них выделяют отдельным классом у которых характерные признаки (скорость, ускорение, положение в пространстве и т.д.) изменяются во времени по гармоническому закону, т.е. имеющему синусоидальный вид. Замечательным свойством гармонических колебаний является то, что их комбинация представляет любые другие варианты, в т.ч. и негармонические. Очень важным понятием в физике является “фаза колебаний”, которое означает фиксацию положения колеблющегося тела в некоторый момент времени. Измеряется фаза в угловых единицах - радианах, достаточно условно, просто как удобный прием для объяснения периодических процессов. Другими словами, фаза определяет значение текущего состояния колебательной системы. Иначе и быть не может - ведь фаза колебаний является аргументом функции, которая описывает эти колебания. Истинное значение фазы для движения колебательного характера может означать координаты, скорость и другие физические параметры, изменяющиеся по гармоническому закону, но общим для них является временная зависимость.

Продемонстрировать, колебаний, совсем не сложно - для этого понадобится простейшая механическая система - нить, длиной r, и подвешенная на ней “материальная точка” - грузик. Закрепим нить в центре прямоугольной системы координат и заставим наш “маятник” крутиться. Допустим, что он охотно это делает с угловой скоростью w. Тогда за время t угол поворота груза составит φ = wt. Дополнительно в этом выражении должна быть учтена начальная фаза колебаний в виде угла φ0 - положение системы перед началом движения. Итак, полный угол поворота, фаза, вычисляется из соотношения φ = wt+ φ0. Тогда выражение для гармонической функции, а это проекция координаты груза на ось Х, можно записать:

x = А * cos(wt + φ0), где А - амплитуда колебания, в нашем случае равная r - радиусу нити.

Аналогично такая же проекция на ось Y запишется следующим образом:

у = А * sin(wt + φ0).

Следует понимать, что фаза колебаний означает в данном случае не меру поворота “угол”, а угловую меру времени, которая выражает время в единицах угла. За это время груз совершает поворот на некоторый угол, который можно однозначно определить, исходя из того, что для циклического колебания w = 2 * π /Т, где Т - период колебания. Следовательно, если одному периоду соответствует поворот на 2π радиан, то часть периода, время, можно пропорционально выразить углом как долей от полного поворота 2π.

Колебания не существуют сами по себе - звуки, свет, вибрация всегда являются суперпозицией, наложением, большого количества колебаний от разных источников. Безусловно, на результат наложения двух и более колебаний оказывают влияние их параметры, в т.ч. и фаза колебаний. Формула суммарного колебания, как правило, негармонического, при этом может иметь очень сложный вид, но от этого становится только интереснее. Как сказано выше, любое негармоническое колебание можно представить в виде большого числа гармонических с разной амплитудой, частотой и фазой. В математике такая операция называется “разложение функции в ряд” и широко используется при проведении расчетов, например, прочности конструкций и сооружений. Основой таких расчетов являются исследования гармонических колебаний с учетом всех параметров, в том числе и фазы.

Функции cos (wt + j), описывающей гармонический колебательный процесс (w√ круговая частота, t √ время, j√ начальная Ф. к., т. е. Ф. к. в начальный момент времени t = 0). Ф. к. определяется с точностью до произвольного слагаемого, кратного 2p. Обычно существенны только разности Ф. к. различных гармонических процессов. Для колебаний одинаковой частоты разность Ф. к. всегда равна разности начальных Ф. к. j1 √ j2 и не зависит от начала отсчёта времени. Для колебаний разных частот w1 и w2 фазовые соотношения характеризуются приведённой разностью Ф. к. j1 - (w1 / w2)×j2, также не зависящей от начала отсчёта времени. Слуховое восприятие направления прихода звука связано с различием Ф. к. волн, приходящих к одному и к другому уху.

Википедия

Фаза колебаний

Фа́за колеба́ний полная - аргумент периодической функции, описывающей колебательный или волновой процесс.

Фаза колебаний начальная - значение фазы колебаний в начальный момент времени, т.е. при t = 0 , а также в начальный момент времени в начале системы координат, т.е. при t = 0 в точке (x , y , z ) = 0 .

Фаза колебания , отсчитываемый от точки перехода значения через нуль к положительному значению.

Как правило, о фазе говорят применительно к гармоническим колебаниям или монохроматическим волнам. При описании величины, испытывающей гармонические колебания, используется, например, одно из выражений:

A cos(ω t  + φ ), A sin(ω t  + φ ), A e .

Аналогично, при описании волны, распространяющейся в одномерном пространстве, например, используются выражения вида:

A cos(k x  − ω t  + φ ), A sin(k x  − ω t  + φ ), A e ,

для волны в пространстве любой размерности:

$A \cos(\mathbf k\cdot \mathbf r - \omega t + \varphi _0)$, $A \sin(\mathbf k\cdot \mathbf r - \omega t + \varphi _0)$, $A e^{i(\mathbf k\cdot \mathbf r - \omega t + \varphi _0)}$.

Фаза колебаний в этих выражениях - аргумент функции, т.е. выражение, записанное в скобках; фаза колебаний начальная - величина φ , являющаяся одним из слагаемых полной фазы. Говоря о полной фазе, слово полная часто опускают.

Поскольку функции sin и cos совпадают друг с другом при сдвиге аргумента на π /2,  то во избежание путаницы лучше пользоваться для определения фазы только одной из этих двух функций, а не той и другой одновременно. По обычному соглашению фазой считают аргумент косинуса, а не синуса .

То есть, для колебательного процесса

φ  = ω t  + φ ,

для волны в одномерном пространстве

φ  = k x  − ω t  + φ ,

для волны в трехмерном пространстве или пространстве любой другой размерности:

$\varphi = \mathbf k\mathbf r - \omega t + \varphi _0$,

где ω - угловая частота (величина, показывающая, на сколько радиан или градусов изменится фаза за 1 с; чем величина выше, тем быстрее растет фаза с течением времени); t - время ; φ - начальная фаза (то есть фаза при t = 0); k - волновое число ; x - координата точки наблюдения волнового процесса в одномерном пространстве; k - волновой вектор ; r - радиус-вектор точки в пространстве (набор координат, например, декартовых).

В приведенных выше выражениях фаза имеет размерность угловых единиц (радианы, градусы). Фазу колебательного процесса по аналогии с механическим вращательным также выражают в циклах, то есть долях периода повторяющегося процесса:

1 цикл = 2π радиан = 360 градусов.

В аналитических выражениях в технике сравнительно редко.

Иногда (в квазиклассическом приближении, где используются квазимонохроматические волны, т.е. близкие к монохроматическим, но не строго монохроматические) а также в формализме интеграла по траекториям, где волны могут быть и далекими от монохроматических, хотя всё же подобны монохроматическим) рассматривается фаза, являющаяся нелинейной функцией времени t и пространственных координат r , в принципе - произвольная функция:

$\varphi = \varphi(\mathbf r, t).$

Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебания широко распространены в окружающем мире и могут иметь самую различную природу. Это могут быть механические (маятник), электромагнитные (колебательный контур) и другие виды колебаний. Свободными , или собственными колебаниями, называются колебания, которые происходят в системе предоставленной самой себе, после того как она была выведена внешним воздействием из состояния равновесия. Примером могут служить колебания шарика, подвешенного на нити. Гармоническими колебаниями называются такие колебания, при которых колеблющаяся величина меняется от времени по закону синуса или косинуса . Уравнение гармонических колебаний имеет вид: , где A - амплитуда колебаний (величина наибольшего отклонения системы от положения равновесия) ; - круговая (циклическая) частота. Периодически изменяющийся аргумент косинуса - называется фазой колебаний . Фаза колебаний определяет смещение колеблющейся величины от положения равновесия в данный момент времени t. Постоянная φ представляет собой значение фазы в момент времени t = 0 и называется начальной фазой колебания .. Этот промежуток времени T называется периодом гармонических колебаний. Период гармонических колебаний равен : T = 2π/.Математи́ческий ма́ятник - осциллятор, представляющий собой механическую систему, состоящую из материальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения . Период малых собственных колебаний математического маятника длины L неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

и не зависит от амплитуды колебаний и массы маятника.Физический маятник - Осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.

24. Электромагнитные колебания. Колебательный контур. Формула Томсона.

Электромагнитные колебания - это колебания электрического и магнитного полей, которые сопровождаются периодическим изменением заряда, силы тока и напряжения. Простейшей системой, где могут возникнуть и существовать свободные электромагнитные колебания, является колебательный контур. Колебательный контур - это цепь, состоящая из катушки индуктивности и конденсатора (рис. 29, а). Если конденсатор зарядить и замкнуть на катушку, то по катушке потечет ток (рис. 29, б). Когда конденсатор разрядится, ток в цепи не прекратится из-за самоиндукции в катушке. Индукционный ток, в соответствии с правилом Ленца, будет иметь то же направление и перезарядит конденсатор (рис. 29, в). Процесс будет повторяться (рис. 29, г) по аналогии с колебаниями маятниками. Таким образом, в колебательном контуре будут происходить электромагнитные колебания из-за превращения энергии электрического поля конденсатора () в энергию магнитного поля катушки с током (), и наоборот. Период электромагнитных колебаний в идеальном колебательном контуре зависит от индуктивности катушки и емкости конденсатора и находится по формуле Томсона . Частота с периодом связана обратно пропорциональной зависимостью .

>> Фаза колебаний

§ 23 ФАЗА КОЛЕБАНИЙ

Введем еще одну величину, характеризующую гармонические колебания , - фазу колебаний.

При заданной амплитуде колебаний координата колеблющегося тела в любой момент времени однозначно определяется аргументом косинуса или синуса :

Величину , стоящую под знаком функции косинуса или синуса, называют фазой колебаний, описываемой этой функцией. Выражается фаза в угловых единицах радианах.

Фаза определяет не только значение координаты, но и значение других физических величин, например скорости и ускорения, изменяющихся также по гармоническому закону. Поэтому можно сказать, что фаза определяет при заданной амплитуде состояние колебательной системы в любой момент времени. В этом состоит значение понятия фазы.

Колебания с одинаковыми амплитудами и частотами могут различаться фазами.

Отношение указывает, сколько периодов прошло от момента начала колебаний. Любому значению времени t, выраженному в числе периодов Т, соответствует значение фазы , выраженное в радианах. Так, по прошествии времени t = (четверти периода) , по прошествии половины периода = , по прошествии целого периода = 2 и т. д.

Можно изобразить на графике зависимость координаты колеблющейся точки не от времени, а от фазы. На рисунке 3.7 показана та же косинусоида, что и на рисунке 3.6, но на горизонтальной оси отложены вместо времени различные значения фазы .

Представление гармонических колебаний с помощью косинуса и синуса. Вы уже знаете, что при гармонических колебаниях координата тела изменяется со временем по закону косинуса или синуса. После введения понятия фазы остановимся на этом подробнее.

Синус отличается от косинуса сдвигом аргумента на , что соответствует, как видно из уравнения (3.21), промежутку времени, равному четверти периода:

Но при этом начальная фаза, т. е. значение фазы в момент времени t = 0, равна не нулю, а .

Обычно колебания тела, прикрепленного к пружине, или колебания маятника мы возбуждаем, выводя тело маятника из положения равновесия и затем отпуская его. Смещение от гихпожения равновесия максимально в начальной момент. Поэтому для описания колебаний удобнее пользоваться формулой (3.14) с применением косинуса, чем формулой (3.23) с применением синуса.

Но если бы мы возбудили колебания покоящегося тела кратковременным толчком, то координата тела в начальный момент была бы равна нулю, и изменения координаты со временем было бы удобнее описывать с помощью синуса, т. е. формулой

x = x m sin t (3.24)

так как при этом начальная фаза равна нулю.

Если в начальный момент времени (при t = 0) фаза колебаний равна , то уравнение колебаний можно записать в виде

x = x m sin(t + )

Сдвиг фаз. Колебания, описываемые формулами (3.23) и (3.24), отличаются друг от друга только фазами. Разность фаз, или, как часто говорят, сдвиг фаз, этих колебаний составляет . На рисунке 3.8 показаны графики зависимости координат от времени колебаний, сдвинутых по фазе на . График 1 соответствует колебаниям, совершающимся по синусоидальному закону: x = x m sin t а график 2 - колебаниям, совершающимся по закону косинуса:

Для определения разности фаз двух колебаний надо в обоих случаях колеблющуюся величину выразить через одну и ту же тригонометрическую функцию - косинус или синус.

1. Какие колебания называют гармоническими!
2. Как связаны ускорение и координата при гармонических колебаниях!

3. Как связаны циклическая частота колебаний и период колебаний!
4. Почему частота колебаний тела, прикрепленного к пружине, зависит от его массы, а частота колебаний математического маятника от массы не зависит!
5. Каковы амплитуды и периоды трех различных гармонических колебаний, графики которых представлены на рисунках 3.8, 3.9!

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Фа́за колеба́ний полная - аргумент периодической функции, описывающей колебательный или волновой процесс.

Фаза колебаний начальная - значение фазы колебаний (полной) в начальный момент времени, т.е. при t = 0 (для колебательного процесса), а также в начальный момент времени в начале системы координат, т.е. при t = 0 в точке (x , y , z ) = 0 (для волнового процесса).

Фаза колебания (в электротехнике) - аргумент синусоидальной функции (напряжения, тока), отсчитываемый от точки перехода значения через нуль к положительному значению.

Фаза колебания - гармоническое колебание ( φ ) .

Величину φ, стоящую под знаком функции косинуса или синуса, называют фазой колебаний , описываемой этой функцией.

φ = ω៰ t

Как правило, о фазе говорят применительно к гармоническим колебаниям или монохроматическим волнам. При описании величины, испытывающей гармонические колебания, используется, например, одно из выражений:

A cos ⁡ (ω t + φ 0) {\displaystyle A\cos(\omega t+\varphi _{0})} , A sin ⁡ (ω t + φ 0) {\displaystyle A\sin(\omega t+\varphi _{0})} , A e i (ω t + φ 0) {\displaystyle Ae^{i(\omega t+\varphi _{0})}} .

Аналогично, при описании волны, распространяющейся в одномерном пространстве, например, используются выражения вида:

A cos ⁡ (k x − ω t + φ 0) {\displaystyle A\cos(kx-\omega t+\varphi _{0})} , A sin ⁡ (k x − ω t + φ 0) {\displaystyle A\sin(kx-\omega t+\varphi _{0})} , A e i (k x − ω t + φ 0) {\displaystyle Ae^{i(kx-\omega t+\varphi _{0})}} ,

для волны в пространстве любой размерности (например, в трехмерном пространстве):

A cos ⁡ (k ⋅ r − ω t + φ 0) {\displaystyle A\cos(\mathbf {k} \cdot \mathbf {r} -\omega t+\varphi _{0})} , A sin ⁡ (k ⋅ r − ω t + φ 0) {\displaystyle A\sin(\mathbf {k} \cdot \mathbf {r} -\omega t+\varphi _{0})} , A e i (k ⋅ r − ω t + φ 0) {\displaystyle Ae^{i(\mathbf {k} \cdot \mathbf {r} -\omega t+\varphi _{0})}} .

Фаза колебаний (полная) в этих выражениях - аргумент функции, т.е. выражение, записанное в скобках; фаза колебаний начальная - величина φ 0 , являющаяся одним из слагаемых полной фазы. Говоря о полной фазе, слово полная часто опускают.

Колебания с одинаковыми амплитудами и частотами могут различаться фазами. Так как ω៰ = 2π/Т , то φ = ω៰t = 2π t/Т.

Отношение t/Т указывает, сколько периодов прошло от момента начала колебаний. Любому значению времени t , выраженному в числе периодов Т , соответствует значение фазы φ , выраженное в радианах. Так, по прошествии времени t = Т/4 (четверти периода) φ=π/2 , по прошествии половины периода φ = π/2 , по прошествии целого периода φ=2 π и т.д.

Поскольку функции sin(…) и cos(…) совпадают друг с другом при сдвиге аргумента (то есть фазы) на π / 2 , {\displaystyle \pi /2,} то во избежание путаницы лучше пользоваться для определения фазы только одной из этих двух функций, а не той и другой одновременно. По обычному соглашению фазой считают аргумент косинуса , а не синуса .

То есть, для колебательного процесса (см. выше) фаза (полная)

φ = ω t + φ 0 {\displaystyle \varphi =\omega t+\varphi _{0}} ,

для волны в одномерном пространстве

φ = k x − ω t + φ 0 {\displaystyle \varphi =kx-\omega t+\varphi _{0}} ,

для волны в трехмерном пространстве или пространстве любой другой размерности:

φ = k r − ω t + φ 0 {\displaystyle \varphi =\mathbf {k} \mathbf {r} -\omega t+\varphi _{0}} ,

где ω {\displaystyle \omega } - угловая частота (величина, показывающая, на сколько радиан или градусов изменится фаза за 1 с; чем величина выше, тем быстрее растет фаза с течением времени); t - время ; φ 0 {\displaystyle \varphi _{0}} - начальная фаза (то есть фаза при t = 0); k - волновое число ; x - координата точки наблюдения волнового процесса в одномерном пространстве; k - волновой вектор ; r - радиус-вектор точки в пространстве (набор координат, например, декартовых).

В приведенных выше выражениях фаза имеет размерность угловых единиц (радианы , градусы). Фазу колебательного процесса по аналогии с механическим вращательным также выражают в циклах , то есть долях периода повторяющегося процесса:

1 цикл = 2 π {\displaystyle \pi } радиан = 360 градусов.

В аналитических выражениях (в формулах) преимущественно (и по умолчанию) используется представление фазы в радианах, представление в градусах также встречается достаточно часто (по-видимому, как предельно явное и не приводящее к путанице, поскольку знак градуса не принято никогда опускать ни в устной речи, ни в записях). Указание фазы в циклах или периодах (за исключением словесных формулировок) в технике сравнительно редко.

Иногда (в квазиклассическом приближении , где используются квазимонохроматические волны, т.е. близкие к монохроматическим, но не строго монохроматические) а также в формализме интеграла по траекториям , где волны могут быть и далекими от монохроматических, хотя всё же подобны монохроматическим) рассматривается фаза, являющаяся нелинейной функцией времени t и пространственных координат r , в принципе - произвольная функция .