Меню
Бесплатно
Главная  /  Для дома  /  Взаимодействие частиц в твердом состоянии. Исследование разных веществ показали

Взаимодействие частиц в твердом состоянии. Исследование разных веществ показали

На рисунке справа частицы тела схематично изображены упорядоченно расположенными шариками. Стрелками показаны силы отталкивания, действующие на частицу со стороны её «соседок». Если бы все частицы находились на равных расстояниях друг от друга, то силы отталкивания взаимно уравновешивались бы («зелёная» частица).

Однако, согласно второму положению МКТ, частицы постоянно и беспорядочно движутся. Из-за этого расстояния от каждой частицы до её соседок постоянно меняются («красная» частица). Следовательно, силы их взаимодействия постоянно меняются и не уравновешиваются, стремясь вернуть частицу в положение равновесия. То есть, потенциальная энергия частиц твёрдых и жидких тел, существуя всегда, постоянно меняется. Сравните: в газах потенциальная энергия частиц практически отсутствует, поскольку они находятся вдалеке друг от друга (см. § 7-б).

Возникновение силы упругости. Сжимая или растягивая, изгибая или скручивая тело, мы сближаем или удаляем его частицы (см. рис.). Поэтому меняются силы притяжения-отталкивания частиц, совместное действие которых и является силой упругости.

Частицы резины изгибаемого ластика (см. также рис.«г») мы условно изобразили шариками. При надавливании пальцем верхние частицы сближаются друг с другом («зелёное» расстояние меньше «красного»). Это приводит к возникновению сил отталкивания (чёрные стрелки направлены от частиц). Вблизи нижней грани ластика частицы удаляются друг от друга, что приводит к возникновению между ними сил притяжения (чёрные стрелки направлены к частицам). В результате одновременного действия сил отталкивания вблизи верхней грани и сил притяжения вблизи нижней грани ластик «хочет» выпрямиться. А это и значит, что в нём возникает сила упругости, направленная противоположно силе давления.


Проверьте свои знания:

  1. Основная цель этого параграфа – обсудить...
  2. Что мы заметим при сжатии торцов цилиндриков?
  3. Прочно ли цилиндрики сцепляются друг с другом?
  4. Какой вывод следует из опыта с цилиндриками?
  5. При каком условии возникает притяжение частиц тел и веществ?
  6. Какое наблюдение свидетельствует об отталкивании частиц?
  7. Почему мы считаем, что частицы веществ могут отталкиваться друг от друга?
  8. При каком условии наблюдается взаимодействие частиц?
  9. Как изменяется характер взаимодействия частиц вещества в зависимости от расстояния между ними?
  10. В каком случае взаимодействие частиц веществ отсутствует?
  11. Почему частицы веществ могут обладать потенциальной энергией?
  12. Почему у частиц твёрдых и жидких веществ всегда имеется потенциальная энергия?
  13. Что символизируют чёрные стрелки на рисунке с частицами твёрдого тела?
  14. Поскольку частицы любого тела или вещества постоянно движутся, ...
  15. Поскольку расстояния между частицами постоянно меняются, ...
  16. Охарактеризуйте потенциальную энергию частиц твёрдых тел и жидкостей. Она, ...
  17. Охарактеризуйте потенциальную энергию частиц газов.
  18. В каких случаях мы изменяем расстояние между частицами тела?
  19. При этом силы притяжения-отталкивания частиц тела меняются, так как...
  20. Сила упругости тела – это одновременно действующие...
  21. Что происходит с частицами вблизи верхней части ластика? Они...
  22. Сила упругости в ластике возникает из-за...

§ 07-г. Взаимодействие частиц веществ

В двух предыдущих параграфах мы обсудили опыты, иллюстрирующие первое и второе положения МКТ. Рассмотрим теперь эксперименты, иллюстрирующие третье основное положение МКТ и его следствия.

Для опыта возьмём два свинцовых цилиндрика с крючками. Чтобы убрать частицы пыли, ножом или лезвием зачистим до блеска торцы обоих цилиндриков (рис. а). Плотно прижав торцы друг к другу, мы обнаружим, что цилиндрики прочно «сцепились». Сила их сцепления настолько велика, что при удачном проведении опыта цилиндрики выдерживают тяжесть гири массой до 5 кг (рис. б). Из этого опыта следует вывод: частицы веществ притягиваются друг к другу. Однако это притяжение заметно лишь тогда, когда поверхности тел очень гладкие и, кроме того, плотно прилегают друг к другу.

Проделаем второй опыт (рис. в, г). Чтобы сдавить резиновый ластик пальцем, требуется очень большая сила; ластик проще изогнуть, чем сдавить. Другие тела (кроме газообразных) также очень сложно сдавить. Это говорит о том, что частицы веществ отталкиваются друг от друга.

Притяжение и отталкивание частиц веществ возникают лишь в случае, если частицы находятся в непосредственной близости друг от друга. Как правило, на расстояниях, больших размеров самих частиц, они притягиваются; на расстояниях, меньших размеров частиц, они отталкиваются. Если частицы удалены на расстояние, во много раз большее, чем их размеры, взаимодействие почти не проявляется.

Рассмотрим теперь энергетический аспект взаимодействия частиц.

Если какие-либо тела взаимодействуют, они обладают потенциальной энергией , зависящей от взаимного положения этих тел (см. § 5-д). На рисунке справа стрелками на частицах показаны силы отталкивания «соседок». Так же можно было бы изобразить и силы притяжения. Если бы все частицы находились на равных расстояниях друг от друга, то все силы взаимно уравновешивались бы («зелёная» частица). Однако, согласно второму положению МКТ, частицы движутся. Поэтому расстояния от каждой частицы до её соседок всё время меняются («красная» частица). Следовательно, силы их взаимодействия постоянно меняются и не уравновешиваются. При этих изменениях расстояний и сил меняется потенциальная энергия каждой частицы, принимая минимальное значение в положении её равновесия.

Потенциальную энергию частицы считают нулевой, когда она находится на большом удалении от других частиц, как, например, в газах, где взаимодействия между частицами практически нет (см. рис. § 7-б). В твёрдых и жидких веществах взаимодействие частиц есть, значит, есть и потенциальная энергия частиц (в скобках заметим: она отрицательна, но сейчас нам важно её значение по модулю). И, чтобы преодолеть взаимодействие частиц и развести их на расстояние, нужно совершить работу. И, чем больше работа по преодолению взаимодействия частиц для разведения их на расстояние, тем больше (по модулю) потенциальная энергия взаимодействия частиц изучаемого вещества.

Возникновение силы упругости. Сжимая или растягивая, изгибая или скручивая тело, мы сближаем или удаляем его частицы (см. рисунок). Поэтому меняются силы притяжения и отталкивания частиц, совместное действие которых проявляется как сила упругости.

Вернёмся к изгибу ластика (рис. г). Частицы резины мы условно изобразили шариками. При надавливании пальцем верхние частицы сближаются друг с другом («зелёное» расстояние меньше «красного»). Это приводит к возникновению между ними сил отталкивания (чёрные стрелки направлены от частиц). Нижние частицы удаляются друг от друга, что приводит к возникновению между ними сил притяжения (чёрные стрелки направлены к частицам). В результате ластик стремится выпрямиться, а значит, в нём существует сила упругости, направленная вверх – противоположно силе давления пальца.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Раздел 2. Основы молекулярно-кинетической теории.

2.1 Основные положения молекулярно-кинетической теории. Броуновское движение. Силы и энергия межмолекулярного взаимодействия. Размеры и масса молекул. Постоянная Авогадро. Идеальный газ. Давление газа. Межзвездный газ*.

Основные положения молекулярно-кинетической теории и их опытные обоснования.

Развитие представлений о строении вещества. Предположе­ние о том, что любое веще­ство состоит из мельчайших неделимых частиц - атомов, было высказано около 2500 лет назад древнегреческими филосо­фами Левкиппом и Демокри­том. По их представлениям все тела образуются в результате соединения атомов. Различия в свойствах тел объясняются тем, что тела состоят из различ­ных атомов или одинаковые атомы по-разному соединены между собой в пространстве.

Су­щественный вклад в развитие молекулярно-кинетических пред­ставлений сделал в середине XVIII в. великий русский уче­ный Михаил Васильевич Ломоносов (1711-1765). Он объяснил основные свойства газа, предположив, что все молекулы газа движутся беспорядочно, ха­отично и при столкновениях от­талкиваются друг от друга. Бес­порядочным движением молекул М. В. Ломоносов впервые объяс­нил природу теплоты. Так как скорости теплового движения мо­лекул могут быть сколько угодно велики, температура вещества по его представлениям не имеет ог­раничения сверху. При умень­шении скорости молекул до нуля должно быть достигнуто мини­мальное возможное значение тем­пературы вещества.

Основные положения молекулярно-кинетической теории. Макроскопическими телами называются большие тела, состоящие из огромного числа молекул. (Газ в баллоне, вода в стакане, песчинка, земной шар).

Тепловыми явлениями называют явления связанные с нагреванием и охлаждением тел, с изменением их температуры.

Тепловое движение это беспорядочное движение молекул.

Молекулярно-кинетической теорией называется учение о строении и свойствах вещества, использующее представления о существовании атомов и молекул как наимень­ших частиц химического веще­ства.

Основные положения молекулярно-кинетической теории строе­ния вещества:

*вещество состоит из частиц - атомов и молекул;

*эти частицы хаотически движут­ся;

частицы взаимодействуют друг с другом.

Броуновское движение это тепловое движение взвешенных в жидкости (или газе) частиц и оно не может прекратиться, т.к. связано с температурой тела. Впервые это явление наблюдал английский ботаник Роберт Броун в 1927 г., рассматривая в микроскоп взвешенные в воде споры плауна. Броуновское движение никогда не прекращается, т.к. оно является тепловым движением. С увеличением температуры интенсивность его растет.

Пример броуновского движения в газах – движение взвешенных в воздухе частиц пыли и дыма. Причина броуновского движения частицы заключается в том, что удары молекул жидкости о частицу некомпенсируют друг друга. (рис 4.1)

Диффузия это перемешивание молекул газов, жидкостей и твердых тел при непосредственном контакте, т.е. проникновение молекул одного вещества в межмолекулярное пространство другого. Скорость протекания диффузии зависит от температуры и состояния вещества. Это явление объясняется беспорядочным движением молекул.

Размеры и масса молекул.

Размер атома . Если пальцы сжать в кулак и увеличить его до размеров земного шара, то атом при том же увеличении станет размером с кулак.

Число молекул. При очень малых размерах молекул число их в любом макроскопическом теле огромно. При каждом вдохе мы вы захватываете столько молекул, что если бы все они после выдоха равномерно распределились в атмосфере Земли, то каждый житель планеты при вдохе получил бы две- три молекулы, побывавшие в ваших легких.

Относительной молекулярной(или атомной) массой вещества М r называют отношение массы молекулы (или атома) m 0 данного вещества к массы атома углерода m 0 c:

Количество вещества (ν) – равно отношению числа молекул N в данном теле к постоянной Авогадро N A (или отношению массы вещества к его молярной массе) .

Один моль – это количество вещества, в котором содержится столько же молекул или атомов, сколько атомов содержится в углероде массой 0,012 кг.

Постоянная Авогадро.

Постоянная Авогадро равна числу молекул в 1 моле вещества. ;

Молярной массой вещества(М) называют массу вещества, взятого в количестве одного моля.

; ; М= m/ν, где m –масса вещества, ν- количество вещества

Идеальный газ. Идеальный газ это газ, взаимодействие, между молекулами которого пренебрежимо мало. Молекулы этого газа – крошечные шарики, которые обладают пренебрежимо малым объемом по сравнению с объемом сосуда. Идеальный газ – это физическая модель реального газа. Разряженные газы ведут себя подобно идеальному газу.

Давление газа. Пусть газ находится в закрытом сосуде. Молекул газа очень много, и удары их о стенку следуют один за другим с очень большой частотой. Среднее значение геометрической суммы сил, действующих со стороны отдельных молекул при их столкновениях со стенкой сосуда, и является силой давления газа. Давление будет тем больше, чем больше молекул ударяется о стенку за некоторый промежуток времени и чем больше скорости соударяющихся со стенкой молекул.

Межзвёздный газ - это разреженная газовая среда, заполняющая всё пространство между звёздами. Межзвёздный газ прозрачен. Полная масса межзвёздного газа в Галактике превышает 10 миллиардов масс Солнца или несколько процентов суммарной массы всех звёзд нашей Галактики. Средняя концентрация атомов межзвёздного газа составляет менее 1 атома в см³. Основная его масса заключена вблизи плоскости Галактики в слое толщиной несколько сотен парсек. Плотность газа в среднем составляет около 10−21 кг/м³. Химический состав примерно такой же, как и у большинства звёзд: он состоит из водорода и гелия (90 % и 10 % по числу атомов, соответственно) с небольшой примесью более тяжёлых элементов. В зависимости от температуры и плотности межзвёздный газ пребывает в молекулярном, атомарном или ионизованном состояниях. Наблюдаются холодные молекулярные облака, разреженный межоблачный газ, облака ионизованного водорода с температурой около 10 тыс. К. (Туманность Ориона), и обширные области разреженного и очень горячего газа с температурой около миллиона К. Ультрафиолетовые лучи, в отличие от лучей видимого света, поглощаются газом и отдают ему свою энергию. Благодаря этому горячие звёзды своим ультрафиолетовым излучением нагревают окружающий газ до температуры примерно 10 000 К. Нагретый газ начинает сам излучать свет, и мы наблюдаем его как светлую газовую туманность. Более холодный, «невидимый» газ наблюдают радиоастрономическими методами. Атомы водорода в разреженной среде излучают радиоволны на длине волны около 21 см. Поэтому от областей межзвёздного газа непрерывно распространяются потоки радиоволн. Принимая и анализируя это излучение, учёные узнают о плотности, температуре и движении межзвёздного газа в космическом пространстве.

Почему многие твердые тела обладают большой прочностью? На стальном тросе толщиной всего 25 мм можно поднять тепловоз. Трудно разделить на куски камень. Объяснить это можно притяжением частиц, из которых состоят твердые тела. Молекулы (атомы) в твердых веществах притягиваются друг к другу . Но почему тогда куски разбитого стеклянного стакана нельзя без клея соединить друг с другом в одно целое? В то же время куски пластилина легко можно соединить в один кусок. Проделайте этот опыт сами.

Объяснить эти факты можно, предположив, что притяжение молекул (атомов) проявляется лишь на малых расстояниях между ними. Действительно, если нагреть стеклянные куски так, чтобы стекло стало мягким, и прижать их друг к другу, они слипнутся в одно целое.

Притягиваются и молекулы жидкости. Проведем опыт. Подвесим на пружине чистую стеклянную пластинку и отметим положение нижнего конца пружины указателем (рис. 106, а). Поднесем к пластинке сосуд с водой до соприкосновения с поверхностью воды (рис. 106, б), после чего будем опускать сосуд до отрыва пластинки. Растяжение пружины увеличится, что указывает на притяжение частиц жидкости (воды) в сосуде и на поверхности стеклянной пластины.

Рис. 106

А вот молекулы (атомы) газа практически не притягиваются друг к другу. В газах частицы находятся на расстояниях, больших, чем в жидкостях и твердых телах. Притяжение на этих расстояниях ничтожно мало. Поэтому молекулы газа разлетаются по всему предоставленному газу объему. Например, запах духов из открытого флакона распространяется по всей комнате.

А есть ли между молекулами отталкивание?

Возьмите сплошной резиновый мячик и попробуйте его сжать (рис. 107, а). Легко ли это сделать? Стоит только перестать сжимать мячик, как он тут же восстанавливает свою форму (рис. 107, б). Значит, между частицами мячика существует отталкивание . Именно отталкивание частиц затрудняло сжатие мячика, оно же восстановило его первоначальную форму.

Рис. 107

Очень важно понять, что притяжение и отталкивание частиц вещества проявляется лишь на малых расстояниях между частицами, т. е. в твердых телах и жидкостях, и заметно меняется при изменении этих расстояний. Описывая взаимодействие молекул, будем их моделировать шариками. Так, на определенных расстояниях притяжение двух молекул компенсируется (уравновешивается) отталкиванием (рис. 108, а). При отдалении молекул (рис. 108, б) отталкивание становится меньше притяжения, а при сближении молекул (рис. 108, в) отталкивание становится больше притяжения.

Рис. 108

Взаимодействие двух молекул в теле условно можно сравнить со взаимодействием двух шариков, скрепленных пружиной (рис. 109, а). При расстояниях r > r 0 (пружина растянута) шарики притягиваются друг к другу (рис. 109, б), а при расстояниях r < r 0 (пружина сжата) - отталкиваются (рис. 109, в).

Рис. 109

Хотя эта модель наглядна, но имеет недостаток: в ней между шариками проявляется или притяжение, или отталкивание. Между частицами вещества притяжение и отталкивание существует одновременно! На одних расстояниях (при отдалении частиц) преобладает притяжение, а на других (при сближении) - отталкивание.

Подумайте и ответьте

  1. Какие известные вам факты объясняются взаимным притяжением частиц вещества? Взаимным отталкиванием?
  2. Почему газ всегда занимает весь предоставленный объем?
  3. Почему металлический трос растянуть гораздо труднее, чем резиновый таких же размеров?
  4. В медицинский шприц (без иголки) наберите воду. Закройте пальцем отверстие и сжимайте поршнем воду. Почему вода практически не сжимается?
  5. Сожмите ластик и отпустите. Что заставило ластик вернуться к первоначальной форме и размерам?
  6. Покажите на опыте, что сухие листы бумаги не прилипают друг к другу, а смоченные водой - прилипают. Объясните наблюдаемый эффект.
  7. Смочите два листочка бумаги: один - водой, другой - растительным маслом. Слипнутся ли они? Предложите гипотезу, объясняющую данное явление.

Сделайте дома сами

  1. Приведите в соприкосновение два куска парафиновой свечи. Соединились ли они? Почему?
  2. Нагрейте конец одного куска свечи на пламени спиртовки (или другой свечи) до мягкого состояния. Соедините куски. Что получилось в результате? Почему?

Интересно знать!

Если аккуратно ножом или лезвием зачистить торцы двух свинцовых цилиндров и плотно прижать их друг к другу, то цилиндры «слипаются». Взаимное притяжение цилиндров настолько велико, что они могут удерживать гирю массой m = 5 кг (рис. 110).

Рис. 110

«Слипание» свинцовых цилиндров доказывает, что частицы веществ способны притягиваться друг к другу. Однако это притяжение возникает лишь тогда, когда поверхности тел очень гладкие (для этого и понадобилась зачистка лезвием). Кроме того, тела должны быть плотно прижаты друг к другу, чтобы расстояния между поверхностями тел было сравнимо с расстоянием между молекулами.

Взаимодействие частиц с веществом зависит от их типа, заряда, массы и энергии. Заряженные частицы ионизуют атомы вещества, взаимодействуя с атомными электронами. Нейтроны и гамма-кванты, сталкиваясь с частицами в веществе, передают им свою энергию, вызывая ионизацию в результате образования вторичных заряженных частиц. В случае γ-квантов основными процессами, приводящими к образованию заряженных частиц являются фотоэффект, эффект Комптона и рождение электрон-позитронных пар. Взаимодействие частиц с веществом зависит от таких характеристик вещества как его плотность, атомный номер и средний ионизационный потенциал вещества.

Ионизационные потери энергии тяжелой заряженной частицей


Рис. п.4.1. Взаимодействие частицы с веществом.

Тяжёлая нерелятивистская заряженная частица с зарядом Ze и скоростью v пролетает вдоль оси x на расстоянии ρ от электрона (рис. 2.2). Сила взаимодействия в момент наибольшего сближения частиц F = Ze 2 / ρ 2 . Время взаимодействия Δt ≈ 2 ρ /v . Переданный электрону импульс Δp ≈ FΔt = 2Ze 2 / (ρ v) . Переданная энергия
ΔE ≈ (Δp) 2 /2m e = 2Z 2 e 4 /(m e v 2 ρ 2). Если n – число электронов в единице объёма, то число электронов в элементе объёма
ΔN = 2πρndρdx. Суммарная энергия, переданная электронам,

где m e − масса электрона (m e с 2 = 511 кэВ − энергия покоя электрона); с - скорость света; β = v/c; v − скорость частицы; Z − заряд частицы в единицах заряда позитрона; n e - плотность электронов вещества; − средний ионизационный потенциал атомов вещества среды, через которую проходит частица:
= 13.5Z" эВ, где Z" − заряд ядер вещества среды в единицах заряда позитрона;
r 0 = e 2 /(m e c 2) = 2.818·10 -13 см − классический радиус электрона.


Рис. п4.2. Удельные потери энергии заряженной частицы в воздухе.

Взаимодействие электронов с веществом

Прохождение электронов через вещество отличается от прохождения тяжёлых заряженных частиц. Главная причинамалая масса электрона, что приводит к относительно большому изменению импульса электрона при каждом его столкновении с частицами вещества, вызывая заметное изменение направления движения электрона и как результат – электро­магнитное радиационное излучение.
Удельные потери энергии электронов с кинетической энергией Te складываются из суммы ионизационных и радиационных потерь энергии.

Ионизационные потери энергии электронов

(п4.3)

В области низких энергий электронов (T e < 1 МэВ) определяющий вклад в потери энергии дают неупругие ионизационные процессы взаимодействия с атомными электронами, включающие ионизацию атомов. Передаваемая в одном столкновении энергия в среднем мала и при движении в веществе потери складываются из очень большого числа таких малых потерь энергии.

Радиационные потери энергии электронов

Ионизационные потери энергии электронов преобладают в области относительно небольших энергий. С ростом энергии электрона T e растут радиационные потери энергии. Согласно классической электродинамике, заряд, испытывающий ускорение a, излучает энергию. Мощность излучения W определяется соотношением W = (2/3)e 2 a 2 /c 3 . Ускорение частицы с зарядом z в поле атомного ядра с зарядом Z: a ≈ Zze 2 /(mr 2).
Ускорение обратно пропорционально массе частицы m. Поэтому энергия, излучаемая при торможении протона, меньше энергии, излученной электроном в том же поле, в ~3.5·10 6 раз. Радиационные потери, играющие важную роль в торможении электронов высокой энергии, практически не существенны при прохождении через вещество тяжёлых заряженных частиц.

Е << m e с 2 = 511 кэВ,

Соотношение между радиационными и ионизационными удельными потерями энергии электронов для жидкости и твердого тела определяются соотношением:

(п4.4)

Энергия, при которой потери энергии на излучение и ионизацию становятся одинаковыми, называется критической.

Пробег заряженной частицы в веществе

Тяжёлые заряженные частицы взаимодействуют в основном с атомными электронами и поэтому мало отклоняются от направления своего перво­начального движения и движутся практически прямолинейно. Средняя длина пути, проходимого частицей до полного замедления, совпадает с расстоянием от точки входа частиц в вещество до точки их остановки и называется пробегом частицы. Обычно пробег измеряется в единицах длины (м, см, мкм) или длины, умноженной на плотность вещества, (г/см 2).

Пробег α-частиц в различных веществах в зависимости от энергии T α

T α , МэВ 4 5 6 7 8 9 10
Воздух, см 2.5 3.5 4.6 5.9 7.4 8.9 10.6
Al, мкм 16 23 30 38 48 58 69
Биологическая ткань, мкм 31 43 56 72 91 110 130

Пробег протонов в алюминии в зависимости от энергии T p

Взаимодействие γ-квантов с веществом

В области энергий γ-квантов от 10 КэВ до 10 МэВ наиболее существенны три механизма взаимодействия γ-квантов с веществом:

  • фотоэффект,
  • комптоновское (некогерентное) рассеяние
  • образование электрон–позитронных пар.

Фотоэффект – процесс взаимодействия g-квантов с электроном атомной оболочки. Электрон вылетает из атома с кинетической энергией T e = E γ – I i , где E γ – энергия γ-кванта, I i – потенциал ионизации i-той электронной оболочки атома. Комптон-эффект – процесс рассеяния фотона на свободном электроне, при котором происходит изменение длины волны рассеянного фотона. Образование электрон-позитронных пар происходит в поле атомного ядра при энергии γ-кванта E γ ≥ 2m e c 2 или на электроне при E γ ≥ 4m e c 2 .
В результате взаимодействий в веществе ослабляется интенсивность пучка γ‑квантов. Ослабление интенсивности моноэнергетического пучка γ‑квантов описывается соотношением

Здесь N – число ядер среды в 1 см 3 .


Рис. п4.3. Зависимость линейного коэффициента поглощения в алюминии и свинце от энергии γ‑квантов

Коэффициент поглощения μ зависит от энергии γ-квантов и свойств вещества. Точные соотношения для величин сечений фотоэффекта, Комптон-эффекта и эффекта образования пар могут быть получены методами квантовой электродинамики. Для оценок величин сечений используются следующие соотношения:

  • Сечение фотоэффекта на ближайшей к ядру электронной K-оболочке:

где r e = e 2 /(m e c 2), ε = E γ /(m e c 2).

При ε << 1: (п4.10)
При ε >> 1: (п4.11)
  • Сечение образования e + e − пар
При m e c 2 << E γ << 137m e c 2 Z -1/3 (п4.12)
При E γ >> 137m e c 2 Z -1/3 (п4.13)

Черенковское излучение

Черенковское излучение является когерентным излучением диполей, образующихся в результате поляризации среды пролетающей заряженной частицей, и возникает при возвращении этих диполей (поляризованных атомов) в исходное неполяризованное состояние. Если частица двигается медленно, то диполи успевают поворачиваться в её направлении. Поляризация среды при этом симметрична относительно координаты частицы. Излучения отдельных диполей при возвращении в исходное состояние гасят друг друга. При движении частицы со «сверхсветовой» для данной среды скоростью за счёт запаздывающей реакции диполей они преимущественно ориентируются в направлении движения частицы. Итоговая поляризация оказывается несимметричной относительно местоположения частицы и излучение диполей некомпенсированным.
Фронт волны черенковского излучения (рис. 2.5) является огибающей сферических волн, испущенных частицей. Фотоны испускаются под углом θ к направлению движения частицы:

cosθ = (βn) -1 ,

где β = v/c, n – показатель преломления среды. Огибающая световых волн А для частицы, двигающейся со скоростью v > c/n, представляет собой конус с углом раствора 2φ, вершина которого совпадает с положением частицы в данный момент (точка P" на рисунке), а нормали к образующим конуса показывают направление распространения черенковского излучения.

Задачи

П 4.1. Во сколько раз отличаются энергетические потери протонов и K + -мезонов с кинетической энергией T = 100 МэВ в алюминиевой фольге толщиной 1 мм?

П 4.2. Пучок протонов с кинетической энергией T = 500 МэВ и током I = 1 мА проходит через медную пластину толщиной D = 1 см. Рассчитайте мощность W, рассеиваемую пучком в пластине.

П 4.3. Определите критические энергии электронов для углерода, алюминия и железа.

П 4.4. Необходимо поглотить электрон с энергией 2 МэВ в алюминиевом поглотителе. Определите его толщину.
Ответ: D = 0.35 см

П 4.5. Какую энергию теряет электрон с энергией 500 МэВ при прохождении алюминиевого поглотителя толщиной 1 см?

П 4.6. Радиоактивный источник испускает γ-квант с энергией 1 МэВ. Какой должна быть толщина стенки свинцового контейнера, чтобы ослабить интенсивность излучения 1) в 10 3 раз, 2) в 10 5 раз?

П 4.7. Как происходят передачи энергии тяжелой и легкой заряженной частицы веществу?

П 4.8. Как зависят удельные ионизационные потери частиц от характеристик среды, в которой они движутся?

П 4.9. Рассчитайте отношение удельных ионизационных потерь энергии α‑частиц с энергией 10 МэВ в воздухе, углероде и свинце.

П 4.10. Рассчитайте удельные ионизационные потери энергии протонов с энергиями 1 МэВ, 10 МэВ, 100 МэВ и 1 ГэВ в свинце.

П 4.11. Протон с кинетической энергией 10 МэВ сталкивается с покоящимся электроном. Рассчитайте, какую максимальную энергию получит электрон.

П 4.12. Рассчитайте какую кинетическую энергию T приобретет первоначально покоящийся электрон при прохождении мимо него с прицельным параметром ρ частицы с массой M и зарядом Z . Скорость частицы до столкновения v << c.
Ответ:

П 4.13. Электроны и протоны с энергией 50 МэВ падают на алюминиевую пластину толщиной 2 мм. Определите энергии электронов и протонов на выходе пластины.
Ответ:
T p =40.7 МэВ, T e =46.4 МэВ

П 4.14. Рассчитайте критические энергии электронов для воздуха, воды и свинца.

П 4.15. Рассчитайте удельные радиационные и ионизационные потери энергии электрона с энергией 100 МэВ при прохождении через алюминиевую и свинцовую фольгу.
Ответ: Al:(dT e /dx) ион = 6.2 МэВ/ см, (dT e /dx) рад = 10.1 МэВ/ см;
Pb:(dT e /dx) ион = 4.3 МэВ/ см, (dT e /dx) рад = 44 МэВ/ см

П 4.16. Рассчитайте сечения фотоэффекта, комптоновского рассеяния и рождения e + e – пар при облучении Al γ-квантами с энергиями 1) 1 МэВ, 2) 5 МэВ, 3) 50 МэВ.

П 4.17. Рассчитайте сечения фотоэффекта, комптоновского рассеяния и рождения e + e – пар при облучении γ-квантами с энергией 5 МэВ мишеней из углерода, железа и свинца

П 4.18. Как влияет заряд вещества Z на относительный вклад сечений фотоэффекта, комптоновского рассеяния и рождения e + e – пар в полное сечение взаимодействия γ-квантов с веществом для фотонов с энергиями 1) 1 МэВ, 2) 5 МэВ, 3) 10 МэВ и 4) 100 МэВ?