Меню
Бесплатно
Главная  /  Материнство  /  Вполне логичный вопрос, что такое Солнце? Школьная энциклопедия

Вполне логичный вопрос, что такое Солнце? Школьная энциклопедия

Все мы довольно часто слышим, что учеными на такой-то звезде или на какой-то там планете обнаружено что-то или кто-то, или просто проведены исследования и … так далее. Но, мало кто задумывается, почему планеты называются планетами, а звезды именно звездами, и какими они обладают важными отличиями, раз одних отделили от других? При этом практически каждый из нас хотя бы раз в своей жизни задавался довольно глупым вопросом: «Солнце это звезда или планета?» Также практически каждый человек сразу ответит на данный вопрос, что Солнце – это, конечно же, звезда, но вот объяснить, почему именно звезда, а не планета способен далеко не каждый.

Возникает вполне логичный вопрос: в чем же заключается различие между звездой и планетой?

Отличие между ними просто огромное, хотя на первый взгляд и не очень заметное

1. Первоочередное и самое главное – звезды способны самостоятельно излучать свет и тепло, в отличие от планет, которые способны только отражать попадающие на них лучи света от других светил, являясь по своей сути темными телами.

2. Звезды обладают гораздо более высокими температурами поверхности, чем любая из известных на данный момент планет. Средние температуры их поверхностей колеблются от 2000 до 40000 градусов, не говоря уже о слоях расположенных ближе к центру космического тела, где температуры, возможно, достигают даже миллионов градусов.


Данные SDO, аппарата изучающего Солнце, за три года работы

3. Звезды значительно превосходят даже самые крупные планеты по своей массе.

4. Все планеты движутся по орбитам относительно своих светил, которые, в свою очередь, в тот же самый момент остаются совершенно неподвижными. Это происходит аналогично тому, как наша Земля вращается вокруг Солнца. Благодаря этому имеется возможность наблюдать у планет различные фазы точно так же, как и у Луны.

5. Все планеты по своему химическому составу образованы как из твердых, так и из легких частиц, в отличие от звезд преимущественно состоящих только из легких элементов.

6. Планеты часто обладают одним или сразу несколькими спутниками, а вот звезды таковых «соседей» никогда не имеют. Но при этом отсутствие спутника это, конечно же, еще не факт, что данное космическое тело не является планетой.

7. На поверхностях абсолютно всех звезд обязательно происходят ядерные или термоядерные реакции, сопровождающиеся взрывами. В свою очередь, на поверхностях планет данные реакций не наблюдаются, ну если только в исключительных случаях, и то только на ядерных планетах и только очень-очень слабые ядерные реакции.

Можно точно утверждать…

Теперь можно абсолютно точно утверждать, что Солнце — это типичная звезда (так называемый желтый карлик G-типа). Потому что вокруг него вращаются 8 планет, образующие вместе с ним Солнечную систему; оно самостоятельно излучает свет и тепло — средняя температура поверхности 5000-6000 K; состоит преимущественно из легких элементов, таких как водород и гелий — почти 99%, и всего лишь 1% составляют твердые вещества; на его поверхности постоянно протекают термоядерные реакции; и своими размерами оно превосходит в несколько раз любую планету Солнечной системы.

Посмотрите на ночное небо, и вы увидите некоторые планеты нашей Солнечной системы, а еще тысячи звезд, которых во Вселенной миллиард миллионов... и ещё больше!

Вселенная состоит из множества галактик, в которых находятся мириады самых разных звезд и объектов вселенной - это галактики и созвездия, туманности и звездные скопления, самые разные звезды и их планетарные системы. Среди них в галактике Млечный путь есть планета, возможно, единственная на которой есть разумная жизнь.

Это Наш дом - планета Земля.

Дом, в котором мы живем - это планета Земля. Наша планета вращается вокруг Солнца и входит в Солнечную систему вместе с другими планетами. Всего в Солнечной системе девять планет, многие из которых имеют свои спутники и кольца. В нашей Солнечной системе можно встретить и кометы, и астероиды и,даже, целые их скопления. Каждый объект Солнечной системы по своему интересен и уникален, и только на одном из них, на нашей планете Земля, есть жизнь.
В раздел...

Созвездия звёздного небо

Тысячи лет назад астрономы, наблюдая за движением звёзд на небе и проводя очертания между ними, наделяли их названиями созвездий, связанные с мифами и легендами. И сейчас, как и тысячилетия назад, каждое время года даёт возможность разглядеть знакомые нам созвездия и звёзды ночного неба. В течение всего годового цикла звезды меняют своё положения относительно нас и только полярная звезда остается вот уже добрых полтора тысячелетия практически неподвижным маяком северного полюса Земли.
В раздел...

Звёзды и галактики

Наша галактика, в которую входит Солнечная система, называется Млечный путь и она огромна по размерам (1 квинтиллион километров и сотни тысяч световых лет), но есть и другие ближайшие, по меркам вселенной, и далекие галактики. Также, как и в нашей галактике, в них находятся самые различные звезды, туманности, рассеянные и шаровые скопления звезд, черные дыры, белые и красные карлики, а также много-много других загадочных объектов вселенной.
В раздел...

Человек и космос

Еще с древних времен человек стремился познать тайну звездного неба. Он изобрел телескоп, запустил спутник, затем человек сам вышел в открытый космос, научился вычислять расстояния и массы, находить самые удаленные на сотни тысяч световых лет звезды в самых далеких уголках вселенной, но многое из уже открытых человеком объектов космоса, по прежнему остается загадкой и тайной самых глубинных недр вселенной.
В раздел...

Наша галактика, в которой мы живем называется Млечный путь. В ней находится Солнечная система, состоящая из Солнца и девяти планет, вращающихся вокруг него. Третья планета по счету от Солнца - это наша планета Земля. И вот с этой планеты мы и начали свое первооткрывание огромной непостижимой вселенной.

Многие самые далекие объекты вселенной уже известны науке, а многие и, возможно, еще больше остаются загадкой. При том, что вселенная постоянно расширяется, многие ее чудеса приходится раскрывать бесконечно.

Первой открытой экзопланетой стала планета у звезды 51Peg в созвездии Пегаса. Фактически планета у звезды 51Peg была обнаружена в 1994 году, но официально объявили об этом лишь осенью следующего года. Сообщения об открытии планет появлялись и раньше, в течение почти всей второй половины ХХ века, но неизменно опровергались. Справедливости ради начать следует с классической (и самой долгой) истории поиска гипотетических планет у звезды Барнарда ("летящей"), открытой в 1916 году.

Звезда Барнарда – четвертая из ближайших к Солнцу звезд. В астрофизике звезды классифицируют по типам, в зависимости, главным образом, от их температуры. Солнце – звезда класса G2, с температурой излучения около 6000 К. Звезда Барнарда – сравнительно холодный и маломассивный красный карлик позднего класса M5V. Э. Барнард был охотником за кометами, причем не бескорыстным: правительство США тогда платило премии за находки комет. Свою звезду в 1916 году он открыл случайно, благодаря главной ее особенности – большому видимому движению по небу, около 10 угловых секунд в год. Позже другой исследователь из США, П. Ван де Камп, заинтересовался звездой Барнарда и не прекращал ее исследования более полувека. Движение звезды он начал изучать в 1938 году, используя астрометрический метод (точное определение координат объекта и его положения относительно других звезд), и, накапливая наблюдательный материал, настойчиво продолжал эту работу до 1980-х годов. Ван де Камп использовал фотопластинки своих наблюдений на 61-сантиметровом телескопе американской обсерватории Спроул, основную часть которых он провел в 1950-1978 годах. По результатам астрометрического анализа 2400 снимков Ван де Камп нашел, что след звезды Барнарда на фотопластинке образует слабо волнистую линию с размахом колебаний до 0,0005 мм, что соответствует периодическому смещению звезды на 0,04 угловой секунды. Такие колебания могли бы возникать под действием обращающейся вокруг звезды массивной планеты, так как в действительности оба тела обращаются вокруг общего центра масс, который, конечно, отстоит от центра звезды гораздо ближе, чем от центра планеты (во столько же раз ближе, во сколько масса звезды больше массы планеты). В таком же равновесии находятся, скажем, бабушка и внучка, качающиеся на противоположных концах доски. Чтобы никто из них не перевешивал, опора доски (барицентр) должна быть значительно ближе к массивной бабушке, чем к легкой внучке. Звезда и планета не качаются, а обращаются вокруг барицентра, но его положение определяется тем же условием. Чем массивнее планета и чем меньше масса звезды, тем заметнее должны быть периодические колебания в движении последней. Так как звезда Барнарда быстро движется, отдельные точки ее последовательных положений складываются в слегка волнистый след, считал Ван де Камп (см. "Наука и жизнь" № 9, 1973 г.).

Из данных Ван де Кампа следовало, что возмущения в движении звезды вызывает планета с массой Юпитера (или больше) и примерно с его же орбитой. В дальнейшем де Камп говорил уже о двух планетах, с периодами 12 и 26 лет. Популярность исследований де Кампа росла, чему способствовало и то, что он умел хорошо владеть аудиторией. Однако некоторые скептики относились к его данным недоверчиво.

Н. Вегман, один из близких коллег де Кампа, провел независимые измерения, колебаний в положении звезды Барнарда не обнаружил, но публиковать свои результаты не стал. В 1971 году Д. Гейтвуду, который тогда был аспирантом Аллеганской обсерватории (США), предложили исследовать движения звезды Барнарда в качестве диссертационной темы. Компьютеры тогда только входили в астрономическую практику, но Гейтвуду удалось разработать новый астрометрический прибор – многоканальный компьютеризированный фотометр, который в значительной мере исключал возможные ошибки измерений. Для надежности измерения проводились независимо в двух обсерваториях. Когда накопилось достаточное количество снимков, запустили программу их обработки. Вокруг громоздкого грохочущего принтера собрались все участники работы. "Это был странный случай, все произошло так быстро, за минуты, – рассказывал Гейтвуд. – Мы смотрели на выползавшую из принтера распечатку, причем не знали, какая из звезд – Барнарда. И вот появилась звезда с возмущениями около 30 тысячных секунды дуги. Я оживился. Бог мой, вот она! Мы нашли! Фантастика! Мы столпились, разглядывая, обсуждая, и тогда… тогда я увидел номер звезды. Это была не звезда Барнарда! Это была двойная звезда с возмущающим компаньоном". Далее появился совершенно ровный, без какой-либо волнистости, след звезды Барнарда.

Де Камп до конца своих дней настаивал на существовании планет у звезды Барнарда. Он умер в 1995 году, в год, странно совпавший с открытием первой подлинной экзопланеты у звезды 51Peg.

Наряду с астрометрией исследователи рассматривали и другие возможные методы поиска планет. В обзорах 80-х годов ХХ столетия приводились вполне обоснованные оценки возможностей методов лучевых скоростей (о нем ниже) и наблюдений внесолнечных планетных тел в оптическом и в инфракрасном диапазонах.

Метод прямой фотометрической регистрации экзопланет по отраженному ими свету в 1970 – 1990-х годах обсуждали многие исследователи. Автор в одной из своих работ 1986 года рассматривал выполнимость такой регистрации планет, исходя из самых-самых предельных технических возможностей. Принималось, что планетная система подобна Солнечной, наблюдаемой с расстояния 5 пк. Отношение света, отраженного планетой, к свету Солнца очень мало и составляет для Венеры и Юпитера одну миллиардную, а для Земли еще в четыре раза меньше. Идеальная оптическая система космического телескопа диаметром 2,6 метра с идеальным приемником могла бы создать фототок в 10-20 фотоэлектронов в секунду от света Юпитера. В принципе такой ток можно измерить, но шум регистрации фототока от самой звезды превышает эти значения в 10 тысяч раз, поэтому система должна быть очень сложной. Расчеты показывали, что задача требует длительности экспозиции не менее 10 часов.

Технические сложности метода прямой регистрации были причиной скептического к нему отношения. Теоретически большими преимуществами обладает радиометрический метод, который отличается от фотометрического только диапазоном длин волн. Фокус здесь заключается в использовании особенностей планковской кривой излучения абсолютно черного тела. Регистрируется не отраженный свет, а собственное инфракрасное излучение планеты в диапазоне 25-50 мкм. Длина волны выбирается правее максимума планковской кривой для планеты, где выигрыш получается наибольшим. К тому же, в отличие от оптической фотометрии, тепловое излучение исходит от всей поверхности планеты, а не только от освещенной стороны. С учетом свойств уравнения Планка отношение интенсивности инфракрасного излучения Юпитера и Солнца получается в 150 тысяч раз больше отношения их яркостей в оптическом диапазоне. Но реальный выигрыш, по техническим причинам, не превышает 100 раз.

Эффективность метода прямой регистрации (в оптическом диапазоне) все-таки была доказана наблюдениями планеты у так называемого коричневого карлика 2M1207. Это особый случай, о котором рассказывается ниже.


Распределение интенсивности излучения в спектре абсолютно черного тела. Если в видимой области отношение яркости звезды и планеты достигает десятков миллиардов, то в области Рэлея -Джинса - всего около ста.


Белый объект справа - это «коричневый» (инфракрасный) карлик 2М1207. По-видимому, у этой карликовой звезды есть планета (слева на снимке). Масса планеты - примерно пять масс Юпитера; она находится на расстоянии 55 а.е. - в 10 раз дальше от звезды, чем Юпитер от Солнца. (Снимок получен в Южно-Европейской обсерватории Паранал (Чили) с помощью так называемой адаптивной оптики 8-метрового телескопа.)

Астрономы с помощью телескопа Spitzer обнаружили в окрестностях белого карлика G29-38 частицы пыли, содержащие элементы кометного вещества, что позволило сделать предположение о возможности существования комет и планет на внешних орбитах мертвых звезд.

Согласно существующей теории, белые карлики образуются из звезд, подобных нашему Солнцу: на одном из этапов своей эволюции звезды становятся красными гигантами, а затем в течение миллионов лет в результате мощных взрывов превращаются в белых карликов. Если у звезды G29–38 раньше были планеты, то образование красного гиганта должно было их поглотить. Но планеты и кометы, вращающиеся на внешних орбитах, могли пережить гибель звезды.

Эту гипотезу впервые подтверждает открытие астрономами пылевого диска, вращающегося вокруг звезды G29–38, которая стала белым карликом около 500 млн. лет назад. По мнению ученых, пыль образовалась гораздо позже взрыва звезды. Это открытие - первое свидетельство того, что кометы и планеты могут жить дольше звезд, вокруг которых они обращались. Наблюдения с помощью телескопа Spitzer позволят сделать предположения об эволюции систем, подобных нашей Солнечной системе.

«Возможно, пыль вокруг белого карлика G29–38, обнаруженная с помощью космического телескопа Spitzer, образовалась относительно недавно. Это могут быть останки кометы, пробившейся с внешней орбиты и распавшейся под действием гравитационных сил звезды», - комментирует доктор Уильям Рич (William Reach) из Научного центра Spitzer Калифорнийского технологического института в Пасадене.

Поводом для исследования окрестностей мертвой звезды послужило обнаружение другими обсерваториями странного источника инфракрасного излучения возле G29–38. Мощный инфракрасный спектрометр Spitzer позволил не только детально разглядеть этот источник - пылевой диск, - но и определить его молекулярную структуру, которая оказалась сходной со структурой комет Солнечной системы, сообщает SpaceFlightNow.

«Мы обнаружили большое количество загрязненных силикатных частиц, размер которых говорит о том, что их источником являлась комета, а не какой-либо другой космический объект», - сообщает астроном Марк Кюхнер (Marc Kuchner) из Центра космических полетов Годдарда NASA в Гринбелте, штат Мэриленд. В нашей Солнечной системе кометы «обитают» в холодных приграничных областях, называемых поясом Койпера и облаком Оорта. И только в том случае, если что-то искажает их орбиты, например, другие кометы или внешние планеты, они начинают совершать периодические путешествия к Солнцу. Для многих комет этот вояж заканчивается гибелью - они либо медленно разрушаются, пролетая слишком близко от Солнца, либо сталкиваются с планетами, как, например, комета Шумахера-Леви 9, упавшая на Юпитер в июле 1994 года.

Хотя наиболее вероятный источник пыли вокруг G29–38 - комета, есть и другие гипотезы. Согласно одной из них, это может быть новый протопланетарный диск, зарождающийся вокруг белого карлика.