Меню
Бесплатно
Главная  /  Поделки  /  Частицы вещества взаимодействуют друг с другом силами. Исследование разных веществ показали

Частицы вещества взаимодействуют друг с другом силами. Исследование разных веществ показали

Молекулярно-кинетические представления о строении вещества объясняют всё многообразие свойств жидкостей, газов и твёрдых тел. Между частицами вещества существуют электромагнитные взаимодействия - они притягиваются и отталкиваются друг от друга с помощью электромагнитных сил. На очень больших расстояниях между молекулами эти силы ничтожно малы.

Силы взаимодействия молекул

Но картина меняется, если уменьшать расстояние между частицами. Нейтральные молекулы начинают ориентироваться в пространстве так, что их обращённые друг к другу поверхности начинают иметь противоположные по знаку заряды и между ними начинают действовать силы притяжения. Это происходит, когда расстояние между центрами молекул больше суммы их радиусов.

Если продолжать уменьшать расстояние между молекулами, то они начинают отталкиваться в результате взаимодействия одноимённо заряженных электронных оболочек. Это происходит, когда сумма радиусов взаимодействующих молекул больше расстояния между центрами частиц.

То есть на больших межмолекулярных расстояниях преобладает притяжение, а на близких - отталкивание. Но существует определённое расстояние между частицами, когда они находятся в положении устойчивого равновесия (силы притяжения равны силам отталкивания). В этом положении у молекул минимальная потенциальная энергия. Молекулы также обладают кинетической энергией, так как находятся всё время в непрерывном движении.

Таким образом, прочность связей взаимодействия между частицами отличает три состояния вещества: твёрдое тело, газ и жидкость, и объясняет их свойства.

Возьмём воду в качестве примера. Размер, форма и химический состав частиц воды остаётся тем же самым, является ли она твёрдой (льдом) или газообразной (паром). Но то, как эти частицы движутся и расположены, различно для каждого состояния.

Твёрдые вещества

Твёрдые вещества сохраняют свою структуру, их можно расколоть или разбить, приложив усилие. Вы не можете пройти через стол, потому что и вы и стол являются твёрдыми. Твёрдые частицы обладают наименьшим количеством энергии из трёх традиционных состояний материи. Частицы расположены в определённой структурной последовательности с очень небольшим пространством между ними.

Они удерживаются вместе в равновесии и могут только вибрировать вокруг фиксированного положения. В связи с этим твёрдые вещества имеют высокую плотность и фиксированную форму и объем. Если оставить стол в течение нескольких дней в покое, он не расширится, и тонким слоем древесины по всему полу не заполнит комнату!

Жидкости

Так же, как в твёрдом веществе, частицы в жидкости упакованы близко друг к другу, но располагаются случайным образом. В отличие от твёрдых тел, человек может проходить через жидкость, это связано с ослаблением силы притяжения, действующей между частицами. В жидкости частицы могут перемещаться друг относительно друга.

Жидкости имеют фиксированный объём, но не имеют фиксированной формы. Они будут течь под действием гравитационных сил . Но некоторые жидкости более вязкие, чем другие. У вязкой жидкости сильнее взаимодействие между молекулами.

Молекулы жидкости обладают гораздо большей кинетической энергией (энергией движения), чем твёрдое тело, но гораздо меньше, чем газ.

Газы

Частицы в газах находятся далеко друг от друга и расположены случайным образом. Это состояние материи имеет самую высокую кинетическую энергию, так как между частицами практически отсутствуют силы притяжения.

Молекулы газов находятся в постоянном движении во всех направлениях (но только по прямой линии), сталкиваются друг с другом, и со стенками сосуда, в котором находятся, - это вызывает давление.

Газы также расширяются, чтобы полностью заполнить объём сосуда, независимо от его размера или формы - газы не имеют фиксированной формы или объёма.

На рисунке справа частицы тела схематично изображены упорядоченно расположенными шариками. Стрелками показаны силы отталкивания, действующие на частицу со стороны её «соседок». Если бы все частицы находились на равных расстояниях друг от друга, то силы отталкивания взаимно уравновешивались бы («зелёная» частица).

Однако, согласно второму положению МКТ, частицы постоянно и беспорядочно движутся. Из-за этого расстояния от каждой частицы до её соседок постоянно меняются («красная» частица). Следовательно, силы их взаимодействия постоянно меняются и не уравновешиваются, стремясь вернуть частицу в положение равновесия. То есть, потенциальная энергия частиц твёрдых и жидких тел, существуя всегда, постоянно меняется. Сравните: в газах потенциальная энергия частиц практически отсутствует, поскольку они находятся вдалеке друг от друга (см. § 7-б).

Возникновение силы упругости. Сжимая или растягивая, изгибая или скручивая тело, мы сближаем или удаляем его частицы (см. рис.). Поэтому меняются силы притяжения-отталкивания частиц, совместное действие которых и является силой упругости.

Частицы резины изгибаемого ластика (см. также рис.«г») мы условно изобразили шариками. При надавливании пальцем верхние частицы сближаются друг с другом («зелёное» расстояние меньше «красного»). Это приводит к возникновению сил отталкивания (чёрные стрелки направлены от частиц). Вблизи нижней грани ластика частицы удаляются друг от друга, что приводит к возникновению между ними сил притяжения (чёрные стрелки направлены к частицам). В результате одновременного действия сил отталкивания вблизи верхней грани и сил притяжения вблизи нижней грани ластик «хочет» выпрямиться. А это и значит, что в нём возникает сила упругости, направленная противоположно силе давления.


Проверьте свои знания:

  1. Основная цель этого параграфа – обсудить...
  2. Что мы заметим при сжатии торцов цилиндриков?
  3. Прочно ли цилиндрики сцепляются друг с другом?
  4. Какой вывод следует из опыта с цилиндриками?
  5. При каком условии возникает притяжение частиц тел и веществ?
  6. Какое наблюдение свидетельствует об отталкивании частиц?
  7. Почему мы считаем, что частицы веществ могут отталкиваться друг от друга?
  8. При каком условии наблюдается взаимодействие частиц?
  9. Как изменяется характер взаимодействия частиц вещества в зависимости от расстояния между ними?
  10. В каком случае взаимодействие частиц веществ отсутствует?
  11. Почему частицы веществ могут обладать потенциальной энергией?
  12. Почему у частиц твёрдых и жидких веществ всегда имеется потенциальная энергия?
  13. Что символизируют чёрные стрелки на рисунке с частицами твёрдого тела?
  14. Поскольку частицы любого тела или вещества постоянно движутся, ...
  15. Поскольку расстояния между частицами постоянно меняются, ...
  16. Охарактеризуйте потенциальную энергию частиц твёрдых тел и жидкостей. Она, ...
  17. Охарактеризуйте потенциальную энергию частиц газов.
  18. В каких случаях мы изменяем расстояние между частицами тела?
  19. При этом силы притяжения-отталкивания частиц тела меняются, так как...
  20. Сила упругости тела – это одновременно действующие...
  21. Что происходит с частицами вблизи верхней части ластика? Они...
  22. Сила упругости в ластике возникает из-за...

Вы знаете, что в телах частицы находятся в непрерывном беспорядочном движении. Почему же твердое тело не распадается на отдельные частицы? Это объясняется тем, что частицы (молекулы или атомы) большинства твердых тел расположены в определенном порядке и очень близко друг к другу.

Каждая частица притягивает к себе соседние частицы и сама притягивается к ним. Эти силы удерживают, например, атомы железа в куске металла, молекулы воды в куске льда или в капле воды. Иначе говоря, сила притяжения – это такая сила, которая удерживает частицы вместе.

Если разломать вязальную спицу на две части и составить их вместе, то они не будут удерживаться друг около друга. Оказывается, притяжение между частицами вещества становится возможным лишь тогда, когда они находятся на определенном расстоянии, достаточно близко одна от другой.

Опыт позволяет обнаружить притяжение частиц.

Берут небольшой свинцовый цилиндр, разрезают его на две половины и быстро сдвигают их свежими срезами. Если место среза не успело окислиться, то обе части свинцового цилиндра соединятся в одно целое. Это можно проверить, закрепив один из цилиндров в держатель, а к другому подвесив груз. Половинка цилиндра с грузом не падает. Следовательно, молекулы половинок цилиндра взаимодействуют друг с другом.


Рис. 34. Притяжение частиц. Две половины свинцового цилиндра соединяются благодаря взаимодействию молекул

Описанный опыт удается благодаря мягкости свинца. С более твердыми, чем свинец, телами (например, половинками разбитого стекла) подобный опыт осуществить невозможно.

Чтобы произошло соединение, молекулы должны находиться на расстоянии друг от друга несколько меньше размеров самих молекул. Куски мягкого материала, например пластилина, слипаются легко. Это происходит потому, что их можно сблизить на такое расстояние, на котором действуют силы притяжения.

Строение жидкостей отличается от строения твердых тел. В жидкостях взаимодействие между молекулами слабее, чем в твердых телах, но все-таки оно имеется. Представьте, что в стакан налили воду, а затем перелили ее в колбу. Первоначально жидкость занимала форму стакана, а затем колбы, в которую ее перелили. Если бы в воде между молекулами действовало притяжение такой же силы, как и в твердых телах, то ее форма не могла бы меняться так легко.

Молекулы в жидкостях расположены почти вплотную друг к другу, поэтому все жидкости обладают очень малой сжимаемостью. Но взаимодействие между молекулами не так велико, чтобы жидкости сохраняли свою форму. Этим объясняется главное свойство жидкостей – текучесть.

Мы уже говорили, что газ можно сжать так, что его объем уменьшится в несколько раз. Значит, в газах расстояние между молекулами намного больше размеров самих молекул. В таких случаях молекулы слабо притягиваются друг к другу. Вот почему газы не сохраняют форму и объем.

Между частицами в твердых телах, жидкостях и газах существует взаимное притяжение.

Возникает вопрос: «Почему существуют промежутки между частицами?» Казалось бы, частицы, притягиваясь друг к другу, должны «слипнуться». Сжатию тел, однако, препятствует отталкивание частиц. Что это именно так, можно убедиться на примере. Резиновый ластик, сжатый и согнутый пополам, распрямится, если края отпустить. Сжатые тела распрямляются потому, что при сжатии частицы настолько сближаются, что начинают отталкиваться друг от друга. Следовательно, притяжение, действующее между частицами атомами и молекулами, удерживает их друг около друга, а отталкивание препятствует их полному сближению.

Взаимодействие частиц вещества

Современная теория строения вещества опирается на пять основных положений.

1. Все вещества состоят из частиц.

Атом мельчайшая частица химического элемента, сохраняющая его свойства. Все известные химические элементы перечислены в таблице Менделеева. Молекула – мельчайшая частица вещества, сохраняющая его свойства. Молекула может состоять из одного или нескольких атомов.

2. Между частицами вещества есть промежутки.

3. Частицы вещества двигаются непрерывно и хаотично.

4. Движение частиц вещества становится интенсивнее с ростом температуры. Движение частиц вещества называют тепловым.

5. Частицы вещества взаимодействуют между собой: притягиваются и отталкиваются. Притяжение и отталкивание действуют одновременно и постоянно. Силы взаимодействия определяют свойства агрегатных состояний вещества. Так как в состав атомов и молекул входят частицы, обладающие электрическими зарядами, межмолекулярные взаимодействия имеют электромагнитную природу. Силы притяжения и отталкивания по-разному зависят от расстояния между частицами. На расстоянии, примерно равном размеру частицы, притяжение и отталкивание равны. Этому расстоянию соответствует наиболее устойчивое расположение частиц, с уменьшение расстояния преобладает отталкивание частиц. С увеличением – притяжение. На расстояниях, превышающих размер частицы в десять и более раз, силы взаимодействия ничтожно малы.

Каждое из пяти положений теории строения вещества имеет экспериментальные доказательства.

1. Фотографии веществ с большим увеличением. Такие явления, как стачивание, растворение, растекание жидкостей до образования тонких плёнок.

2. Фотографии вещества. Тепловое расширение веществ. Уменьшение суммарного объёма при смешивании различных жидкостей.

3. Диффузия и броуновское движение.

4. Возрастание скорости диффузии и интенсивности броуновского движения при увеличении температуры вещества.

5. Слипание веществ при их тесном контакте, упругие деформации, смачивание жидкостями твёрдых поверхностей.

Почему многие твердые тела обладают большой прочностью? На стальном тросе толщиной всего 25 мм можно поднять тепловоз. Трудно разделить на куски камень. Объяснить это можно притяжением частиц, из которых состоят твердые тела. Молекулы (атомы) в твердых веществах притягиваются друг к другу. Но почему тогда куски разбитого стеклянного стакана нельзя без клея соединить друг с другом в одно целое? В то же время куски пластилина легко можно соединить в один кусок.

Объяснить эти факты можно, предположив, что притяжение молекул (атомов) проявляется лишь на малых расстояниях между ними. Действительно, если нагреть стеклянные куски так, чтобы стекло стало мягким, и прижать их друг к другу, они слипнутся в одно целое.

Притягиваются и молекулы жидкости. Проведем опыт. Подвесим на пружине чистую стеклянную пластинку и отметим положение нижнего конца пружины указателем. Поднесем к пластинке сосуд с водой до соприкосновения с поверхностью воды, после чего будем опускать сосуд до отрыва пластинки. Растяжение пружины увеличится, что указывает на притяжение частиц жидкости (воды) в сосуде и на поверхности стеклянной пластины.

А вот молекулы (атомы) газа практически не притягиваются друг к другу. В газах частицы находятся на расстояниях, больших, чем в жидкостях и твердых телах. Притяжение на этих расстояниях ничтожно мало. Поэтому молекулы газа разлетаются по всему предоставленному газу объему. Например, запах духов из открытого флакона распространяется по всей комнате.

А есть ли между молекулами отталкивание?

Возьмите сплошной резиновый мячик и попробуйте его сжать. Легко ли это сделать? Стоит только перестать сжимать мячик, как он тут же восстанавливает свою форму. Значит, между частицами существует отталкивание . Именно отталкивание частиц затрудняло сжатие мячика, оно же восстановило его первоначальную форму.

Очень важно понять, что притяжение и отталкивание частиц вещества проявляется лишь на малых расстояниях между частицами, т. е. в твердых телах и жидкостях, и заметно меняется при изменении этих расстояний. Описывая взаимодействие молекул, будем их моделировать шариками. Так, на определенных расстояниях притяжение двух молекул компенсируется (уравновешивается) отталкиванием. При отдалении молекул отталкивание становится меньше притяжения, а при сближении молекул отталкивание становится больше притяжения.

Взаимодействие двух молекул в теле условно можно сравнить со взаимодействием двух шариков, скрепленных пружиной. При расстояниях r > r 0 (пружина растянута) шарики притягиваются друг к другу, а при расстояниях r < r 0 (пружина сжата) - отталкиваются.

Хотя эта модель наглядна, но имеет недостаток: в ней между шариками проявляется или притяжение, или отталкивание. Между частицами вещества притяжение и отталкивание существует одновременно! На одних расстояниях (при отдалении частиц) преобладает притяжение, а на других (при сближении) - отталкивание.

Если аккуратно ножом или лезвием зачистить торцы двух свинцовых цилиндров и плотно прижать их друг к другу, то цилиндры «слипаются». Взаимное притяжение цилиндров настолько велико, что они могут удерживать гирю массой m = 5 кг.

«Слипание» свинцовых цилиндров доказывает, что частицы веществ способны притягиваться друг к другу. Однако это притяжение возникает лишь тогда, когда поверхности тел очень гладкие (для этого и понадобилась зачистка лезвием). Кроме того, тела должны быть плотно прижаты друг к другу, чтобы расстояния между поверхностями тел было сравнимо с расстоянием между молекулами.