Меню
Бесплатно
Главная  /  Рецепты  /  Предел 0 делить на бесконечность. Основные неопределенности пределов и их раскрытие

Предел 0 делить на бесконечность. Основные неопределенности пределов и их раскрытие

Инструкция

Неопределенность вида [∞-∞], раскрывается, если имеется в виду разность каких-либо дробей. Приведя эту разность к общему знаменателю, получите некоторое отношение функций.

Неопределенности типа 0^∞, 1^∞, ∞^0 возникают при вычислении типа p(x)^q(x). В этом случае применяют предварительное дифференцирование. Тогда искомого предела А примет вид произведения, возможно, что с готовым знаменателем. Если нет, то можно использовать методику примера 3. Главное не забыть записать окончательный ответ в виде е^А (см. рис.5).

Видео по теме

Источники:

  • вычислить предел функции не пользуясь правилом лопиталя в 2019

Инструкция

Пределом называется некоторое число, к которому стремится переменная переменная или значение выражения. Обычно переменные или функции стремятся либо к нулю, либо к бесконечности. При пределе, нулю, величина считается бесконечно малой. Иными словами, бесконечно малыми называются величины, которые переменны и приближаются к нулю. Если стремится к бесконечности, то его называют бесконечным пределом. Обычно он записывается в виде:
lim x=+∞.

У есть ряд свойств, некоторые из которых представляют собой . Ниже представлены основные из них.
- одна величина имеет только один предел;

Предел постоянной величины равен величине этой постоянной;

Предел суммы равен сумме пределов: lim(x+y)=lim x + lim y;

Предел произведения равен произведению пределов: lim(xy)=lim x * lim y

Постоянный множитель может быть вынесен за знак предела: lim(Cx) = C * lim x, где C=const;

Предел частного равен частному пределов: lim(x/y)=lim x / lim y.

В задачах с пределами встречаются как числовые выражения, так и этих выражений. Это может выглядеть, в частности, следующим образом:
lim xn=a (при n→∞).
Ниже представлен несложного предела:
lim 3n +1 /n+1

n→∞.
Для решения этого предела поделите все выражение на n единиц. Известно, что если единица делится на некоторую величину n→∞, то предел 1/n равен нулю. Справедливо и обратное: если n→0, то 1/0=∞. Поделив весь пример на n, запишите его в представленном ниже виде и получите :
lim 3+1/n/1+1/n=3

При решении на пределы могут возникать результаты, которые называются неопределенностями. В таких случаях применяют правила Лопиталя. Для этого производят повторное функции, которое приведет пример в такую форму, в которой его можно было решить. Существуют два типа неопределенностей: 0/0 и ∞/∞. Пример c неопределенностью может выглядеть, в частности, следующим обращом:
lim 1-cosx/4x^2=(0/0)=lim sinx/8x=(0/0)=lim cosx/8=1/8

Видео по теме

Расчет пределов функций - фундамент математического анализа, которому посвящено немало страниц в учебниках. Однако подчас не понятно не только определение, но и сама суть предела. Говоря простым языком, предел - это приближение одной переменной величины, которая зависит от другой, к какому-то конкретному единственному значению по мере изменения этой другой величины. Для успешного вычисления достаточно держать в уме простой алгоритм решения.

Методы решения пределов. Неопределённости.
Порядок роста функции. Метод замены

Пример 4

Найти предел

Это более простой пример для самостоятельного решения. В предложенном примере снова неопределённость ( более высокого порядка роста, чем корень ).

Если «икс» стремится к «минус бесконечности»

Призрак «минус бесконечности» уже давно витал в этой статье. Рассмотрим пределы с многочленами, в которых . Принципы и методы решения будут точно такими же, что и в первой части урока, за исключением ряда нюансов.

Рассмотрим 4 фишки, которые потребуются для решения практических заданий:

1) Вычислим предел

Значение предела зависит только от слагаемого , поскольку оно обладает самым высоким порядком роста. Если , то бесконечно большое по модулю отрицательное число в ЧЁТНОЙ степени , в данном случае – в четвёртой, равно «плюс бесконечности»: . Константа («двойка») положительна , поэтому:

2) Вычислим предел

Здесь старшая степень опять чётная , поэтому: . Но перед расположился «минус» (отрицательная константа –1), следовательно:

3) Вычислим предел

Значение предела зависит только от . Как вы помните из школы, «минус» «выскакивает» из-под нечётной степени, поэтому бесконечно большое по модулю отрицательное число в НЕЧЁТНОЙ степени равно «минус бесконечности», в данном случае: .
Константа («четвёрка») положительна , значит:

4) Вычислим предел

Первый парень на деревне снова обладает нечётной степенью, кроме того, за пазухой отрицательная константа, а значит: Таким образом:
.

Пример 5

Найти предел

Используя вышеизложенные пункты, приходим к выводу, что здесь неопределённость . Числитель и знаменатель одного порядка роста, значит, в пределе получится конечное число. Узнаем ответ, отбросив всех мальков:

Решение тривиально:

Пример 6

Найти предел

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

А сейчас, пожалуй, самый тонкий из случаев:

Пример 7

Найти предел

Рассматривая старшие слагаемые, приходим к выводу, что здесь неопределённость . Числитель более высокого порядка роста, чем знаменатель, поэтому сразу можно сказать, что предел равен бесконечности. Но какой бесконечности, «плюс» или «минус»? Приём тот же – в числителе и знаменателе избавимся от мелочи:

Решаем:

Разделим числитель и знаменатель на

Пример 15

Найти предел

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Ещё пара занятных примеров на тему замены переменной:

Пример 16

Найти предел

При подстановке единицы в предел получается неопределённость . Замена переменной уже напрашивается, но сначала преобразуем тангенс по формуле . Действительно, зачем нам тангенс?

Заметьте, что , поэтому . Если не совсем понятно, посмотрите значения синуса в тригонометрической таблице . Таким образом, мы сразу избавляемся от множителя , кроме того, получаем более привычную неопределённость 0:0. Хорошо бы ещё и предел у нас стремился к нулю.

Проведем замену:

Если , то

Под косинусом у нас находится «икс», который тоже необходимо выразить через «тэ».
Из замены выражаем: .

Завершаем решение:

(1) Проводим подстановку

(2) Раскрываем скобки под косинусом.

(4) Чтобы организовать первый замечательный предел , искусственно домножаем числитель на и обратное число .

Задание для самостоятельного решения:

Пример 17

Найти предел

Полное решение и ответ в конце урока.

Это были несложные задачи в своём классе, на практике всё бывает хуже, и, помимо формул приведения , приходится использовать самые разные тригонометрические формулы , а также прочие ухищрения. В статье Сложные пределы я разобрал пару настоящих примеров =)

В канун праздника окончательно проясним ситуацию ещё с одной распространённой неопределённостью:

Устранение неопределённости «единица в степени бесконечность»

Данную неопределённость «обслуживает» второй замечательный предел , и во второй части того урока мы очень подробно рассмотрели стандартные примеры решений, которые в большинстве случаев встречаются на практике. Сейчас картина с экспонентами будет завершена, кроме того, заключительные задания урока будут посвящены пределам-«обманкам», в которых КАЖЕТСЯ, что необходимо применить 2-й замечательный предел, хотя это вовсе не так.

Недостаток двух рабочих формул 2-го замечательного предела состоит в том, что аргумент должен стремиться к «плюс бесконечности» либо к нулю. Но что делать, если аргумент стремится к другому числу?

На помощь приходит универсальная формула (которая на самом деле является следствием второго замечательного предела):

Неопределённость можно устранить по формуле:

Где-то вроде уже пояснял, что обозначают квадратные скобки. Ничего особенного, скобки как скобки. Обычно их используют, чтобы чётче выделить математическую запись.

Выделим существенные моменты формулы:

1) Речь идёт только о неопределённости и никакой другой .

2) Аргумент «икс» может стремиться к произвольному значению (а не только к нулю или ), в частности, к «минус бесконечности» либо к любому конечному числу.

С помощью данной формулы можно решить все примеры урока Замечательные пределы , которые относятся ко 2-му замечательному пределу. Например, вычислим предел :

В данном случае , и по формуле :

Правда, делать так не советую, в традициях всё-таки применять «обычное» оформление решения, если его можно применить. Однако с помощью формулы очень удобно выполнять проверку «классических» примеров на 2-й замечательный предел.

Ну, вот скажите, как так получается, что как только у меня возникает ощущение, что пора высказаться на какую-нибудь тему, так сразу и во френд-ленте возникает несколько постов, в которых затрагиваются те же самые вопросы?
Сейчас вот после публикации рассуждений насчет «свободы и необходимости» () возникла потребность высказаться по неким математическим вопросам; и тут же вижу во френд-ленте: http://vorona-n.livejournal.com/66460.html и http://kosilova.livejournal.com/595991.html?thread=11645207#t11645207 !
А высказаться мне захотелось по вопросам о бесконечности .
Дело в том, что большинство труднопостижимых загадок и «парадоксов» и в науке, и в философии связаны ИМХО именно с бесконечностью . Пока мы остаемся в рамках конечных, замкнутых систем – все просто, наглядно, понятно, но зато и пессимистично: «тепловая смерть», предсказуемость и предопределенность, механистичность и алгебраичность. Пока мы остаемся в рамках замкнутых систем, нет места «звездному небу» или «уроку гармонии», «свободе воли» и «обширному полю сознания».
Возможно, именно в способности аппелировать к бесконечности и заключается основное достижение человеческого разума?
А бесконечность полна парадоксов. Именно они, пожалуй, больше всего запомнились мне из всего курса математики в школе и универе.

sin_gular в обсуждении поста http://kosilova.livejournal.com/595991.html пишет: …И вот что я подумал - все таки вся человеческая математика основана на понятии натурального числа. На дискретности и анизотропности. Видимо так интуитивно работает мозг. Базовым математическим объектом для нас оказалось натуральное число.
Но ведь даже натуральный ряд (1, 2, 3, …) – это уже простейшая из возможных бесконечностей.
И она уже дает нам множество парадоксов.

1. Бесконечность + бесконечность = та же самая бесконечность.
Ну, вот первый из парадоксов. Возьмем не натуральные числа, а целые: то есть добавим к натуральному ряду ещё «0» и отрицательные числа. Казалось бы, общее количество чисел должно было увеличиться вдвое; но на самом деле, их осталось столько же! Потому как целые числа можно перенумеровать так же, как натуральные. Вот:
1 – 0
2 – 1
3 – -1
4 – 2
5 – -2
6 – 3
и т.д. То есть взяв любое целое число, мы однозначно сможем сопоставить ему натуральное, и наоборот. Целых чисел – столько же, сколько и натуральных!
И сколько ни прибавляй к бесконечности бесконечность, все равно в результате будет ТА ЖЕ САМАЯ бесконечность! Ну, не хочет она увеличиваться, и всё тут!

2. «Бесконечность» умножить на «бесконечность» = та же самая «бесконечность»!
Но этого мало. Возьмем теперь не целые числа, а рациональные – то есть всевозможные дроби, полученные путем деления одного целого числа на другое.
Казалось бы, их должно быть в бесконечное число раз больше, чем количество целых чисел. Ну, возьмем, к примеру, такое сопоставление:
1 – 1;
2 – ½;
3 – 1/3;
4 – ¼;
5 – 1/5;
и т.д.
Казалось бы, мы взяли лишь малую толику рациональных чисел – только между 0 и 1 и только такие, где в числителе стоит «1»; а их уже оказалось столько же, сколько всех целых чисел, вместе взятых! Значит, в общей сложности, рациональных чисел должно быть в бесконечное число раз больше, чем целых!
А вот получается, что на самом деле это вовсе не так. Потому что рациональные числа на самом деле тоже можно перенумеровать, точно так же, как и целые!
Вот, смотрите. Давайте выстроим такую вот «числовую пирамиду»:
1 – 0;
2 – 1/1 (=1);
3 – ½ ; 2/1 (=2);
4 – 1/3 ; 3/1 (=3);
5 – ¼ ; 2/3 ; 3/2 ; 4/1 (=4);
и т.д.
Т.е. на каждом «этаже» пирамиды располагаются те дроби, в которых сумма числителя и знаменателя равна номеру «этажа» пирамиды!
Не буду приводить доказательств, но таким образом можно перенумеровать все рациональные числа – то есть даже перемножив «бесконечность» на саму себя, да ещё не один раз, мы в итоге получили ТУ ЖЕ САМУЮ бесконечность!

3. Дуализм «дискретного» и «непрерывного»
Как говорится, «чем дальше в лес, тем больше дров».
Парадоксы я стараюсь расположить в порядке нарастания степени их парадоксальности. И вот сейчас мы как раз подходим к тому из парадоксов, который меня в своё время поразил, пожалуй, больше всего.
Интуитивно понятно, что есть две принципиально разные вещи – процессы «дискретные» и «непрерывные». Грубо говоря, набор точек и линия.
Формально, если взять для наглядности геометрическое представление, то дискретное множество – это такое, где вокруг любого элемента можно, грубо говоря, провести окружность, внутри которой ни одного другого элемента этого множества не найдётся. То есть, есть некое минимально возможное «расстояние» между элементами множества, ближе которого они друг к другу не приближаются. Дискретный набор точек в микроскоп всегда при некотором увеличении будет выглядеть именно как набор точек, а не непрерывная линия.
Наоборот, в непрерывном (точнее, насколько я помню, «всюду плотном») множестве, сколь малое расстояние не возьми, всегда найдётся элемент, который ближе к выбранной точке, чем данное расстояние. Грубо говоря, какое увеличение в микроскопе не возьми, такое множество всё равно будет оставаться «линией», и не превратится в «набор точек».
Для чисел самым наглядным геометрическим представлением является ось координат. На этой оси целые числа будут являться отдельными точками, а рациональные – как раз таки всей осью, непрерывной (точнее, «всюду плотной») линией, которую, со сколь угодно большим увеличением ни рассматривай, она всё равно линией и останется, и никогда не «рассыплется» в набор отдельных точек.
И вот, получается, что на самом деле, количество «точек», составляющих дискретное множество и «непрерывную» линию – одинаково!!!
Помню, этот «дуализм» дискретного и непрерывного в своё время поразил меня больше всего из всего того странного и не укладывающегося в рамки «здравого смысла». Что связано с «бесконечностью».

4. Бесконечность больше бесконечности.
Но даже и на этом парадоксы всё-таки не заканчиваются.
Казалось бы, всё, дальше ехать некуда, больше найденной нами «бесконечности» ничего уже быть не может.
А вот оказывается, вовсе и не так!
Потому как «рациональные» числа – это вовсе даже не все числа, какие есть в природе.
И, как оказывается, даже не большая их часть.
Потому как кроме «рациональных чисел», каждое из которых можно представить в виде дроби, в числителе и знаменателе которой – целые числа, существуют ещё числа «иррациональные», в виде простых дробей не представимые. Любое рациональное число можно записать в виде периодической десятичной дроби; иррациональные числа – это бесконечные непериодические десятичные дроби. Наиболее известным представителем таких чисел является число «пи » - отношение длины окружности к её диаметру.
Так вот, я не помню уже доказательств (прошу поверить мне на слово), но иррациональные числа перенумеровать принципиально невозможно – их количество оказывается БОЛЬШЕ, чем количество целых чисел! Математически первая из рассмотренных мною бесконечностей (набор целых чисел) принято именовать счетной , вторую (иррациональные числа) - несчетной .
Насколько я помню, для сравнения «бесконечностей» между собой используется понятие «мощности»; и насколько я помню, этих самых «мощностей» опять таки может быть бесконечное количество:-)

5. Линия, которая бесконечно длиннее самой себя.
Ну, и самое интересное, что геометрически и рациональные, и иррациональные числа можно представить как одну и ту же линию – ось координат; и то, и другое множество является «всюду плотным», и на графике будет выглядеть как одна и та же линия! Сколько ни увеличивай разрешающую способность «микроскопа», различий между линией, состоящей из рациональных чисел, и линией, состоящей из иррациональных чисел, увидеть не удастся: при любом «увеличении» это будет одна и та же непрерывная («всюду плотная») линия!
И тем не менее, «рациональная линия» бесконечно «короче» «иррациональной»!

Очень часто многие задаются вопросом, почему же нельзя использовать деление на ноль? В этой статье мы очень подробно расскажем о том, откуда появилось это правило, а также о том, какие действия можно выполнять с нолем.

Вконтакте

Ноль можно назвать одной из самых интересных цифр. У этой цифры нет значения , она означает пустоту в прямом смысле слова. Однако, если ноль поставить рядом с какой-либо цифрой, то значение этой цифры станет больше в несколько раз.

Число очень загадочно само по себе. Его использовал еще древний народ майя. У майя ноль означал «начало», а отсчет календарных дней также начинался с нуля.

Очень интересным фактом является то, что знак ноля и знак неопределенности у них были похожи. Этим майя хотели показать, что ноль является таким же тождественным знаком, как и неопределенность. В Европе же обозначение нуля появилось сравнительно недавно.

Также многим известен запрет, связанный с нолем. Любой человек скажет, что на ноль нельзя делить . Это говорят учителя в школе, а дети обычно верят им на слово. Обычно детям либо просто не интересно это знать, либо они знают, что будет, если, услышав важный запрет, сразу же спросить «А почему нельзя делить на ноль?». Но когда становишься старше, то просыпается интерес, и хочется побольше узнать о причинах такого запрета. Однако существует разумное доказательство.

Действия с нулем

Для начала необходимо определить, какие действия с нулем можно выполнять. Существует несколько видов действий :

  • Сложение;
  • Умножение;
  • Вычитание;
  • Деление (ноля на число);
  • Возведение в степень.

Важно! Если при сложении к любому числу прибавить ноль, то это число останется прежним и не поменяет своего числового значения. То же произойдет, если от любого числа отнять ноль.

При умножении и делении все обстоит немного иначе. Если умножить любое число на ноль , то и произведение тоже станет нулевым.

Рассмотрим пример:

Запишем это как сложение:

Всего складываемых нолей пять, вот и получается, что


Попробуем один умножить на ноль
. Результат также будет нулевым.

Ноль также можно разделить на любое другое число, не равное ему. В этом случае получится , значение которой также будет нулевым. Это же правило действует и для отрицательных чисел. Если ноль делить на отрицательное число, то получится ноль.

Также можно возвести любое число в нулевую степень . В таком случае получится 1. При этом важно помнить, что выражение «ноль в нулевой степени» абсолютно бессмысленно. Если попытаться возвести ноль в любую степень, то получится ноль. Пример:

Пользуемся правилом умножения, получаем 0.

Так можно ли делить на ноль

Итак, вот мы и подошли к главному вопросу. Можно ли делить на ноль вообще? И почему же нельзя разделить число на ноль при том, что все остальные действия с нулем вполне существуют и применяются? Для ответа на этот вопрос необходимо обратиться к высшей математике.

Начнем вообще с определения понятия, что же такое ноль? Школьные учителя утверждают, что ноль-это ничто. Пустота. То есть когда ты говоришь, что у тебя 0 ручек, это значит, что у тебя совсем нет ручек.

В высшей математике понятие «ноль» более широкое. Оно вовсе не означает пустоту. Здесь ноль называют неопределенностью, так как если провести небольшое исследование, то получается, что при делении ноля на ноль мы можем в результате получить любое другое число, которое не обязательно может быть нолем.

Знаете ли вы, что те простые арифметические действия, которые вы изучали в школе не так равноправны между собой? Самыми базовыми действиями являются сложение и умножение .

Для математиков не существует понятий « » и «вычитание». Допустим: если от пяти отнять три, то останется два. Так выглядит вычитание. Однако, математики запишут это таким образом:

Таким образом, получается, что неизвестной разностью является некое число, которое нужно прибавить к 3, чтобы получить 5. То есть, не нужно ничего вычитать, нужно просто найти подходящее число. Это правило действует для сложения.

Немного иначе дела обстоят с правилами умножения и деления. Известно, что умножение на ноль приводит к нулевому результату. Например, если 3:0=х, тогда, если перевернуть запись, получится 3*х=0. А число, которое умножалось на 0 даст ноль и в произведении. Получается, что числа, которое бы давало в произведении с нолем какую-либо величину, отличную от ноля, не существует. А значит, деление на ноль бессмысленно, то есть оно подходит к нашему правилу.

Но что будет, если попытаться разделить сам ноль на себя же? Возьмем как х некое неопределенное число. Получается уравнение 0*х=0. Его можно решить.

Если мы попробуем взять вместо х ноль, то мы получим 0:0=0. Казалось бы, логично? Но если мы попробуем вместо х взять любое другое число, например, 1, то в конечном итоге получится 0:0=1. Та же ситуация будет, если взять любое другое число и подставить его в уравнение .

В этом случае получится, что мы можем как множитель взять любое другое число. Итогом будет бесконечное множество разных чисел. Порой все же деление на 0 в высшей математике имеет смысл, но тогда обычно появляется некое условие, благодаря которому мы сможем все-таки выбрать одно подходящее число. Это действие называется «раскрытием неопределенности». В обычной же арифметике деление на ноль снова потеряет свой смысл, так как мы не сможем выбрать из множества какое-то одно число.

Важно! На ноль нельзя разделить ноль.

Ноль и бесконечность

Бесконечность очень часто можно встретить в высшей математике. Так как школьникам просто не важно знать о том, что существуют еще математические действия с бесконечностью, то и объяснить детям, почему делить на ноль нельзя, учителя как следует не могут.

Основные математические секреты ученики начинают узнавать лишь на первом курсе института. Высшая математика предоставляет большой комплекс задач, которые не имеют решения. Самыми известными задачами являются задачи с бесконечностью. Их можно решить при помощи математического анализа.

К бесконечности также можно применить элементарные математические действия: сложение, умножение на число. Обычно еще применяют вычитание и деление, но в конечном итоге они все равно сводятся к двум простейшим операциям.