Меню
Бесплатно
Главная  /  Товары для детей  /  Молекула ДНК человека. Как работают гены, что такое РНК, нуклеотиды, синтез белка. Строение днк Строение молекулы днк ген

Молекула ДНК человека. Как работают гены, что такое РНК, нуклеотиды, синтез белка. Строение днк Строение молекулы днк ген

Нуклеиновые кислоты - высокомолекулярные вещества, состоящие из мононуклеотидов, которые соединены друг с другом в полимерную цепочку с помощью 3",5"- фосфодиэфирных связей и упакованы в клетках определенным образом.

Нуклеиновые кислоты - биополимеры двух разновидностей: рибонуклеиновая кислота (РНК) и дезоксирибонуклеиновая кислота (ДНК). Каждый биополимер состоит из нуклеотидов, различающихся по углеводному остатку (рибозе, дезоксирибозе) и одному из азотистых оснований (урацил, тимин). Соответственно этим различиям нуклеиновые кислоты и получили свое название.

Структура дезоксирибонуклеиновой кислоты

Нуклеиновые кислоты имеют первичную, вторичную и третичную структуру.

Первичная структура ДНК

Первичной структурой ДНК называют линейную полинуклеотидную цепь, в которой мононуклеотиды соединены 3", 5"-фосфодиэфирными связями. Исходным материалом при сборке цепи нуклеиновой кислоты в клетке является нуклеозид 5"-трифосфат, который в результате удаления β и γ остатков фосфорной кислоты способен присоединить 3"-атом углерода другого нуклеозида. Таким образом, 3"-атом углерода одной дезоксирибозы ковалентно связывается с 5"-атомом углерода другой дезоксирибозы посредством одного остатка фосфорной кислоты и образует линейную полинуклеотидную цепь нуклеиновой кислоты. Отсюда и название: 3", 5"-фосфодиэфирные связи. Азотистые основания не принимают участия в соединении нуклеотидов одной цепи (рис. 1.).

Такое соединение, между остатком молекулы фосфорной кислоты одного нуклеотида и углеводом другого, приводит к образованию пентозо-фосфатного скелета молекулы полинуклеотида, на котором сбоку один за другим присоединяются азотистые основания. Их последовательность расположения в цепях молекул нуклеиновых кислот строго специфична для клеток разных организмов, т.е. носит видовой характер (правило Чаргаффа).

Линейная цепь ДНК, длина которой зависит от числа входящих в цепь нуклеотидов, имеет два конца: один называется 3"-концом и содержит свободный гидроксил, а другой - 5"-концом, содержит остаток фосфорной кислоты. Цепь полярна и может иметь напрвление 5"->3" и 3"->5". Исключением являются кольцевые ДНК.

Генетический "текст" ДНК составлен с помощью кодовых "слов" - триплетов нуклеотидов, называемых кодонами. Участки ДНК, содержащие информацию о первичной структуре всех типов РНК, называют структурными генами.

Полинуклеодитные цепочки ДНК достигают гигантских размеров, поэтому в клетке они упакованы определенным образом.

Изучая состав ДНК, Чаргафф (1949) установил важные закономерности, касающиеся содержания отдельных оснований ДНК. Они помогли раскрыть вторичную структуру ДНК. Эти закономерности называют правилами Чаргаффа.

Правила Чаргаффа

  1. сумма пуриновых нуклеотидов равна сумме пиримидиновых нуклеотидов, т. е. А+Г / Ц+Т = 1
  2. содержание аденина равно содержанию тимина (А = Т, или А/Т=1);
  3. содержание гуанина равно содержанию цитозина (Г = Ц, или Г/Ц = 1);
  4. количество 6-аминогрупп равно количеству 6-кетогрупп оснований, содержащихся в ДНК: Г + Т = А + Ц;
  5. изменчива только сумма А + Т и Г + Ц. Если А+Т > Г-Ц, то это АТ-тип ДНК; если Г+Ц > А+Т, то это ГЦ-тип ДНК.

Эти правила говорят о том, что при построении ДНК должно соблюдаться довольно строгое соответствие (спаривание) не пуриновых и пиримидиновых оснований вообще, а конкретно тимина с аденином и цитозина с гуанином.

На основании этих правил в том числе, в 1953 г. Уотсон и Крик предложили модель вторичной структуры ДНК, получившую название двойной спирали (рис.).

Вторичная структура ДНК

Вторичная структура ДНК - это двойная спираль, модель которой была предложена Д.Уотсоном и Ф.Криком в 1953 году.

Предпосылки к созданию модели ДНК

В результате первоначальных анализов сложилось представление, что ДНК любого происхождения содержит все четыре нуклеотида в равных молярных количествах. Однако в 1940-х годах Э. Чаргафф и его сотрудники в результате анализа ДНК, выделенных из разнообразных организмов, ясно показали, что азотистые основания содержатся в них в различных количественных соотношениях. Чаргафф нашел, что, хотя эти соотношения одинаковы для ДНК из всех клеток одного и того же вида организмов, ДНК от разных видов могут заметно различаться по содержанию тех или иных нуклеотидов. Это наводило на мысль, что различия в соотношении азотистых оснований, возможно, связаны с каким-то биологическим кодом. Хотя соотношение отдельных пуриновых и пиримидиновых оснований в различных образцах ДНК оказалось неодинаковым, при сравнении результатов анализов выявилась определенная закономерность: во всех образцах общее количество пуринов было равно общему количеству пиримидинов (А + Г = Т + Ц), количество аденина - количеству тимина (А = Т), а количество гуанина - количеству цитозина (Г = Ц). ДНК, выделенная из клеток млекопитающих, была в целом богаче аденином и тимином и относительно беднее гуанином и цитозином, тогда как у бактерий ДНК была богаче гуанином и цитозином и относительно беднее аденином и тимином. Эти данные составили важную часть фактического материала, на основе которого позднее была построена модель структуры ДНК Уотсона - Крика.

Еще одним важным косвенным указанием на возможную структуру ДНК послужили данные Л. Полинга о строении белковых молекул. Полинг показал, что возможно несколько различных устойчивых конфигураций аминокислотной цепи в белковой молекуле. Одна из распространенных конфигураций пептидной цепи - α-спираль - представляет собой правильную винтообразную структуру. При такой структуре возможно образование водородных связей между аминокислотами, находящимися на смежных витках цепи. Полинг описал α-спиральную конфигурацию полипептидной цепи в 1950 году и высказал предположение, что и молекулы ДНК, вероятно, имеют спиральную структуру, закрепленную водородными связями.

Однако наиболее ценные сведения о строении молекулы ДНК дали результаты рентгеноструктурного анализа. Рентгеновские лучи, проходя сквозь кристалл ДНК, претерпевают дифракцию, т. е. отклоняются в определенных направлениях. Степень и характер отклонения лучей зависят от структуры самих молекул. Дифракционная рентгенограмма (рис. 3) дает опытному глазу ряд косвенных указаний относительно строения молекул исследуемого вещества. Анализ дифракционных рентгенограмм ДНК привел к заключению, что азотистые основания (имеющие плоскую форму) уложены наподобие стопки тарелок. Рентгенограммы позволили выявить в структуре кристаллической ДНК три главных периода: 0,34, 2 и 3,4 нм.

Модель ДНК Уотсона-Крика

Исходя из аналитических данных Чаргаффа, рентгенограмм, полученных Уилкинсом и исследований химиков, предоставивших сведения о точных расстояниях между атомами в молекуле, об углах между связями данного атома и о величине атомов, Уотсон и Крик начали строить физические модели отдельных составных частей молекулы ДНК в определенном масштабе и "подгонять" их друг к другу с таким расчетом, чтобы полученная система соответствовала различным экспериментальным данным [показать] .

Еще раньше было известно, что в цепи ДНК соседние нуклеотиды соединены фосфодиэфирными мостиками, связывающими 5"-углеродный атом дезоксирибозы одного нуклеотида с 3"-углеродным атомом дезоксирибозы следующего нуклеотида. Уотсон и Крик не сомневались в том, что период 0,34 нм соответствует расстоянию между последовательными нуклеотидами в цепи ДНК. Далее, можно было предполагать, что период 2 нм соответствует толщине цепи. А для того чтобы объяснить, какой реальной структуре соответствует период 3,4 нм, Уотсон и Крик, так же как ранее Полинг, предположили, что цепь закручена в виде спирали (или, точнее, образует винтовую линию, так как спираль в строгом смысле этого слова получается тогда, когда витки образуют в пространстве коническую, а не цилиндрическую поверхность). Тогда период 3,4 нм будет соответствовать расстоянию между последовательными витками этой спирали. Такая спираль может быть очень плотной или же несколько растянутой, т. е. витки ее могут быть пологими или крутыми. Поскольку период 3,4 нм ровно в 10 раз больше расстояния между последовательными нуклеотидами (0,34 нм), ясно, что каждый полный виток спирали содержит 10 нуклеотидов. По этим данным Уотсон и Крик смогли вычислить плотность полинуклеотидной цепи, закрученной в спираль диаметром 2 нм, с расстоянием между витками, равным 3,4 нм. Оказалось, что у такой цепи плотность была бы вдвое меньше фактической плотности ДНК, которая была уже известна. Пришлось предположить, что молекула ДНК состоит из двух цепей - что это двойная спираль из нуклеотидов.

Следующей задачей было, конечно, выяснение пространственных отношений между обеими цепями, образующими двойную спираль. Испробовав на своей физической модели ряд вариантов расположения цепей, Уотсон и Крик нашли, что всем имеющимся данным лучше всего соответствует такой вариант, в котором две полинуклеотидные спирали идут в противоположных направлениях; при этом цепи, состоящие из остатков сахара и фосфата, образуют поверхность двойной спирали, а пурины и пиримидины располагаются внутри. Расположенные друг против друга основания, принадлежащие двум цепям, попарно соединены водородными связями; именно эти водородные связи и удерживают цепи вместе, фиксируя таким образом общую конфигурацию молекулы.

Двойную спираль ДНК можно представить себе в виде винтообразно закрученной веревочной лестницы, так чтобы перекладины ее оставались в горизонтальном положении. Тогда две продольные веревки будут соответствовать цепям из остатков сахара и фосфата, а перекладины - парам азотистых оснований, соединенных водородными связями.

В результате дальнейшего изучения возможных моделей Уотсон и Крик пришли к выводу, что каждая "перекладина" должна состоять из одного пурина и одного пиримидина; при периоде 2 нм (что соответствует диаметру двойной спирали) для двух пуринов не хватило бы места, а два пиримидина не могли бы при этом располагаться достаточно близко друг к другу, чтобы образовать надлежащие водородные связи. Углубленное исследование детальной модели показало, что аденин и цитозин, составляя подходящую по размерам комбинацию, все же не могли бы располагаться таким образом, чтобы между ними образовались водородные связи. Аналогичные сообщения заставили исключить также комбинацию гуанин - тимин, тогда как сочетания аденин - тимин и гуанин - цитозин оказались вполне приемлемыми. Природа водородных связей такова, что аденин образует пару с тимином, а гуанин - с цитозином. Это представление о специфическом спаривании оснований позволяло объяснить "правило Чаргаффа", согласно которому в любой молекуле ДНК количество аденина всегда равно содержанию тимина, а количество гуанина - количеству цитозина. Между аденином и тимином образуются две водородные связи, а между гуанином и цитозином - три. Благодаря этой специфичности в образовании водородных связей против каждого аденина в одной цепи в другой оказывается тимин; точно так же против каждого гуанина может находиться только цитозин. Таким образом, цепи комплементарны друг другу, т. е. последовательность нуклеотидов в одной цепи однозначно определяет их последовательность в другой. Две цепи идут в противоположных направлениях, и их концевые фосфатные группы находятся на противоположных концах двойной спирали.

В результате своих исследований, в 1953 году Уотсон и Крик предложили модель строения молекулы ДНК (рис. 3), которая остается актуальной по настоящее время. Согласно модели молекула ДНК состоит из двух комплементарных полинуклеотидных цепей. Каждая цепь ДНК представляет полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов. В ней соседние нуклеотиды образуют регулярный пентозо-фосфатный остов за счет соединения остатка фосфорной кислоты и дезоксирибозы прочной ковалентной связью. Азотистые основания одной полинуклеотидной цепи при этом располагаются в строго определенном порядке против азотистых оснований другой. Чередование азотистых оснований в полинуклеотидной цепи нерегулярно.

Расположение азотистых оснований в цепи ДНК является комплементарным (от греч. "комплемент" - дополнение), т.е. против аденина (А) всегда оказывается тимин (Т), а против гуанина (Г) - только цитозин (Ц). Это объясняется тем, что А и Т, а также Г и Ц строго соответствуют друг другу, т.е. дополняют друг другу. Такое соответствие задается химической структурой оснований, позволяющей образовать водородные связи в паре пурина и пиримидина. Между А и Т возникают две связи, между Г и Ц - три. Эти связи обеспечивают частичную стабилизацию молекулы ДНК в пространстве. Устойчивость двойной спирали при этом прямо пропорциональна числу связей G≡С, являющихся более стабильными по сравнению со связями А=Т.

Известная последовательность расположения нуклеотидов в одной цепи ДНК позволяет по принципу комплементарности установить нуклеотиды другой цепи.

Кроме того, установлено, что азотистые основания, имеющие ароматическую структуру, в водном растворе располагаются один над другим, формируя как бы стопку монет. Такой процесс формирования стопок из органических молекул называется стекинг. Полинуклеотидные цепи молекулы ДНК рассматриваемой модели Уотсона-Крика имеют аналогичное физико-химическое состояние, их азотистые основания располагаются в виде стопки монет, между плоскостями которых возникают ван-дер-ваальсовы взаимодействия (стекинг-взаимодействия).

Водородные связи между комплементарными основаниями (по горизонтали) и стекинг-взаимодействие между плоскостями оснований в полинуклеотидной цепи за счет ван-дер-ваальсовых сил (по вертикали) обеспечивает молекуле ДНК дополнительную стабилизацию в пространстве.

Сахарофосфатные остовы обеих цепей обращены наружу, а основания внутрь, навстречу друг другу. Направление цепей в ДНК антипараллельно (одна из них имеет направление 5"->3", другая - 3"->5", т.е. 3"-конец одной цепи расположен напротив 5"-конца другой.). Цепи образуют правые спирали с общей осью. Один виток спирали составляет 10 нуклеотидов, размер витка 3,4 нм, высота каждого нуклеотида 0,34 нм, диаметр спирали – 2,0 нм. В результате вращения одной цепи вокруг другой, образуется большая борозда (диаметром около 20 Å) и малая борозда (около 12 Å) двойной спирали ДНК. Такая форма двойной спирали Уотсона-Крика в дальнейшем получила название В-формы. В клетках ДНК обычно существует в В-форме, которая является самой стабильной.

Функции ДНК

Предложенная модель объясняла многие биологические свойства дезоксирибонуклеиновой кислоты, в том числе хранение генетической информации и многообразие генов, обеспечиваемое большим разнообразием последовательных сочетаний 4-х нуклеотидов и фактом существования генетического кода, способность к самовоспроизведению и передаче генетической информации, обеспечиваемое процессом репликации, и реализацию генетической информации в виде белков, а также любых других соединений, образующихся с помощью белков-ферментов.

Oсновные функции ДНК.

  1. ДНК является носителем генетической информации, что обеспечивается фактом существования генетического кода.
  2. Воспроизведение и передана генетической информации в поколениях клеток и организмов. Эта функция обеспечивается процессом репликации.
  3. Реализация генетической информации в виде белков, а также любых других соединений, образующихся с помощью белков-ферментов. Эта функция обеспечивается процессами транскрипции и трансляции.

Формы организации двухцепочечной ДНК

ДНК может формировать несколько типов двойных спиралей (рис.4). В настоящее время уже известно шесть форм (от А до Е и Z-форма).

Структурные формы ДНК, как установила Розалинда Франклин, зависят от насыщения водой молекулы нуклеиновой кислоты. В исследованиях волокон ДНК при помощи рентгеноструктурного анализа было показано, что рентгенограмма радикальным образом зависит от того, при какой относительной влажности, при какой степени насыщения водой этого волокна происходит эксперимент. Если волокно было достаточно насыщено водой, то получалась одна рентгенограмма. При высушивании возникала совершенно другая рентгенограмма, сильно отличающаяся от рентгенограммы волокна высокой влажности.

Молекула ДНК высокой влажности получила название В-формы . При физиологических условиях (низкая концентрация соли, высокая степерь гидратации) доминирующим структурным типом ДНК является В-форма (основная форма двухцепочечной ДНК - модель Уотсона-Крика). Шаг спирали такой молекулы равен 3,4 нм. На виток приходится 10 комплементарных пар в виде скрученных стопок "монет" - азотистых оснований. Стопки удерживаются водородными связями между двумя противолежащими "монетами" стопок, и "обмотаны" двумя лентами фосфодиэфирного остова, закрученными в правую спираль. Плоскости азотистых оснований перпендикулярны оси спирали. Соседние комплементарные пары повернуты друг относительно друга на 36°. Диаметр спирали 20Å, причем пуриновый нуклеотид занимает 12Å, а пиримидиновый - 8Å.

Молекула ДНК более низкой влажности получила название А-формы . А-форма образуется в условиях менее высокой гидратации и при более высоком содержании ионов Na + или К + . Эта более широкая правоспиральная конформация имеет 11 пар азотистых оснований на виток. Плоскости азотистых оснований имеют более сильный наклон к оси спирали, они отклонены от нормали к оси спирали на 20°. Отсюда следует наличие внутренней пустоты диаметром 5Å. Расстояние между соседними нуклеотидами составляет 0,23 нм, длина витка – 2,5 нм, диаметр спирали – 2,3 нм.

Первоначально считали, что А-форма ДНК менее важна. Однако в дальнейшем выяснилось, что А-форма ДНК, также как и В-форма, имеет огромное биологическое значение. А-форму имеет спираль РНК-ДНК в комплексе матрица-затравка, а также спираль РНК-РНК и шпилечные структуры РНК (2’-гидроксильная группа рибозы не позволяет молекулам РНК образовывать В-форму). А-форма ДНК обнаружена в спорах. Установлено, что А-форма ДНК в 10 раз устойчивее к действию УФ-лучей, чем В-форма.

А-форму и В-форму называют каноническими формами ДНК.

Формы С-Е также правоспиральные, их образование можно наблюдать только в специальных экспериментах, и, по-видимому, они не существуют in vivo. С-форма ДНК имеет структуру, сходную с В-ДНК. Число пар оснований на виток составляет 9,33, длина витка спирали равна 3,1 нм. Пары оснований наклонены на угол 8 градусов относительно перпендикулярного положения к оси. Желобки по размерам близки к желобкам В-ДНК. При этом главный желобок несколько мельче, а минорный желобок – глубже. В С-форму могут переходить природные и синтетические полинуклеотиды ДНК.

Таблица 1. Характеристика некоторых типов структур ДНК
Тип спирали A B Z
Шаг спирали 0,32 нм 3,38 нм 4,46 нм
Закрученность спирали Правая Правая Левая
Число пар оснований на виток 11 10 12
Расстояние между плоскостями оснований 0,256 нм 0,338 нм 0,371 нм
Конформация гликозидной связи анти анти анти-С
син-Г
Конформация фуранозного цикла С3"-эндо С2"-эндо С3"-эндо-Г
С2"-эндо-Ц
Ширина бороздки, малой/большой 1,11/0,22 нм 0,57/1,17 нм 0,2/0,88 нм
Глубина бороздки, малой/большой 0,26/1,30 нм 0,82/0,85 нм 1,38/0,37 нм
Диаметр спирали 2,3 нм 2,0 нм 1,8 нм

Структурные элементы ДНК
(неканонические структуры ДНК)

К структурным элементам ДНК можно отнести необычные структуры, ограниченные какими-то специальными последовательностями:

  1. Z-форма ДНК - образуется в местах В-формы ДНК, где пурины чередуются с пиримидинами или в повторах, содержащих метилированный цитозин.
  2. Палиндромы - последовательности-перевертыши, инвертированные повторы последовательностей оснований, имеющие симметрию второго порядка относительно двух цепей ДНК и образующие "шпильки" и "кресты".
  3. H-форма ДНК и тройные спирали ДНК - образуются при наличии в одной цепи нормального Уотсон-Криковского дуплекса участка, содержащего только пурины, и во второй цепи, соответственно, комплементарные им пиримидины.
  4. G-квадруплекс (G-4) - четырехцепочечная спираль ДНК, где 4 гуаниновых основания из разных цепей образуют G-квартеты (G-тетрады), скрепленные водородными связами с образованием G-квадруплексов.

Z-форма ДНК была открыта в 1979 году при изучении гексануклеотида d(CG)3 - . Ее открыл профессор Массачусетского технологического института Александр Рич с сотрудниками. Z-форма стала одним из важнейших структурных элементов ДНК в связи с тем, что ее образование наблюдалось в участках ДНК, где пурины чередуются с пиримидинами (например, 5’-ГЦГЦГЦ-3’), или в повторах 5’-ЦГЦГЦГ-3’, содержащих метилированный цитозин. Существенным условием образования и стабилизации Z-ДНК являлось присутствие в ней пуриновых нуклеотидов в син-конформации, чередующихся с пиримидиновыми основаниями в анти-конформации.

Природные молекулы ДНК в основном существуют в правой В-форме, если они не содержат последовательностей типа (ЦГ)n. Однако, если такие последовательности входят в состав ДНК, то эти участки при изменении ионной силы раствора или катионов, нейтрализующих отрицательный заряд на фосфодиэфирном каркасе, могут переходить в Z-форму, при этом другие участки ДНК в цепи остаются в классической В-форме. Возможность такого перехода указывает на то, что две цепи в двойной спирали ДНК находятся в динамическом состоянии и могут раскручиваться друг относительно друга, переходя из правой формы в левую и наоборот. Биологические следствия такой лабильности, допускающей конформационные превращения структуры ДНК пока не вполне понятны. Полагают, что участки Z-ДНК играют определенную роль в регуляции экспрессии некоторых генов и принимают участие в генетической рекомбинации.

Z-форма ДНК - это левозакрученная двойная спираль, в которой фосфодиэфирный остов расположен зигзагообразно вдоль оси молекулы. Отсюда и название молекулы (zigzag)-ДHK. Z-ДНК - наименее скрученная (12 пар оснований на виток) и наиболее тонкая из известных в природе. Расстояние между соседними нуклеотидами составляет 0,38 нм, длина витка – 4,56 нм, диаметр Z-ДНК – 1,8 нм. Кроме того, внешний вид этой молекулы ДНК отличается наличием одной бороздки.

Z-форма ДНК была обнаружена в клетках прокариот и эукариот. В настоящее время получены антитела, способные отличать Z-форму от В-формы ДНК. Эти антитела связываются с определенными участками гигантских хромосом клеток слюнных желез дрозофилы (Dr. melanogaster). За реакцией связывания легко следить из-за необычного строения этих хромосом, у которых более плотные участки (диски) контрастируют с менее плотными (междисками). Участки Z-ДНК расположены в междисках. Из этого следует, что Z-форма реально существует в естественных условиях, хотя размеры индивидуальных участков Z-формы пока неизвестны.

(перевертыши) - наиболее известные и часто встречающиеся в ДНК последовательности оснований. Палиндромом называют слово или фразу, которое читается слева направо и наоборот одинаково. Примерами таких слов или фраз являются: ШАЛАШ, КАЗАК, ПОТОП, А РОЗА УПАЛА НА ЛАПУ АЗОРА. В применении к участкам ДНК данный термин (палиндром) означает одинаковое чередование нуклеотидов вдоль цепи справа налево и слева направо (подобно буквам в слове "шалаш" и пр.).

Палиндром характеризуется наличием инвертированных повторов последовательностей оснований имеющих симметрию второго порядка относительно двух цепей ДНК. Такие последовательности, по вполне понятной причине, являются самокомплементарными и имеют склонность к образованию шпилечных или крестообразных структур (рис.). Шпильки помогают регуляторным белкам узнавать место списывания генетического текста ДНК хромосом.

В тех случаях, когда инвертированный повтор присутствует в одной и той же цепи ДНК такая последовательность называется зеркальным повтором. Зеркальные повторы не обладают свойствами самокомплементарности и, поэтому не способны к формированию шпилечных или крестообразных структур. Последовательности такого типа обнаружены практически во всех крупных молекулах ДНК и могут включать от всего нескольких пар оснований до нескольких тысяч пар оснований.

Присутствие палиндромов в виде крестообразных структур в эукариотических клетках не доказано, хотя некоторое количество крестообразных структур обнаружено в условиях in vivo в клетках E. coli. Наличие в составе РНК или одноцепочечных ДНК самокомплементарных последовательностей служит основной причиной сворачивания в растворах нуклеиновой цепи в определенную пространственную структуру, отличающуюся формированием множества "шпилек".

Н-форма ДНК - это спираль, которую образуют три цепи ДНК - тройная спираль ДНК. Представляет собой комплекс уотсон-криковской двойной спирали с третьей одноцепочечной нитью ДНК, которая укладывается в ее большой желобок, с образованием так называемой хугстиновской пары.

Образование подобного триплекса происходит в результате сложения двойной спирали ДНК таким образом, что половина ее участка остается в виде двойной спирали, а вторая половина разъединяется. При этом одна из разъединенных спиралей образует новую структуру с первой половиной двойной спирали - тройную спираль, а вторая оказывается неструктурированной, в виде однонитевого участка. Особенностью этого структурного перехода является резкая зависимость от рН среды, протоны которой стабилизируют новую структуру. В силу этой особенности новая структура получила название Н-формы ДНК, образование которой было обнаружено в сверхспирализованных плазмидах, содержащих гомопурин-гомопиримидиновые участки, представляющие собой зеркальный повтор.

В дальнейших исследованиях была установлена возможность осуществления структурного перехода некоторых гомопурин-гомопиримидиновых двунитиевых полинуклеотидов с образованием трехнитиевой структуры, содержащей:

  • одну гомопуриновую и две гомопиримидиновые нити (Py-Pu-Py триплекс ) [хугстиновское взаимодействие].

    Составляющие блоки Py-Pu-Py триплекса - канонические изоморфные CGC+ и TAT триады. Стабилизация триплекса требует протонирования триады CGC+, поэтому эти триплексы зависят от рН раствора.

  • одну гомопиримидиновую и две гомопуриновые нити (Py-Pu-Pu триплекс ) [обратное хугстиновское взаимодействие].

    Составляющие блоки Py-Pu-Pu триплекса - канонические изоморфные CGG и TAA триад. Существенным свойством Py-Pu-Pu триплексов является зависимость их стабильности от присутствия двухзарядных ионов, причем для стабилизации триплексов разной последовательности необходимы различные ионы. Поскольку для образования Py-Pu-Pu триплексов не требуется протонирования входящих в их состав нуклеотидов, такие триплексы могут существовать при нейтральных pH.

    Прим.: прямое и обратное хугстиновское взаимодействие объясняется симметрией 1-метилтимина: поворот на 180° приводит к тому, что место атома О4 занимает атом О2, при этом система водородных связей сохраняется.

Известны два вида тройных спиралей:

  1. параллельные тройные спирали, в которых полярность третьей цепи совпадает с полярностью гомопуриновой цепи Уотсон-криковского дуплекса
  2. антипараллельные тройные спирали, в которых полярности третьей и гомопуриновой цепей противоположны.
Химически гомологичные цепи как в Py-Pu-Pu, так и в Py-Pu-Py триплексах, находятся в антипараллельной ориентации. Это в дальнейшем было подтверждено данными ЯМР спектроскопии.

G-квадруплекс - 4-х спиральная ДНК. Такая структура образуется в случае, если имеются четыри гуанина, которые образуют так называемый G-квадруплекс - хоровод из четырех гуанинов.

Первые намеки на возможность образования таких структур были получены задолго до прорывной работы Уотсона и Крика - еще в 1910 году. Тогда немецкий химик Ивар Банг обнаружил, что один из компонентов ДНК - гуанозиновая кислота - при высоких концентрациях образует гели, в то время как другие составные части ДНК таким свойством не обладают.

В 1962 году с помощью рентгеноструктурного метода удалось установить структуру ячейки этого геля. Она оказалась составлена из четырех остатков гуанина, связывающих друг друга по кругу и образующих характерный квадрат. В центре связь поддерживает ион металла (Na, K, Mg). Такие же структуры могут образовываться и в ДНК, если в ней много гуанина. Эти плоские квадраты (G-квартеты) складываются в стопки, и получаются довольно устойчивые, плотные структуры (G-квадруплексы).

В четырехспиральные комплексы могут сплетаться четыре отдельные цепочки ДНК, но это скорее является исключением. Чаще единственная нить нуклеиновой кислоты просто завязывается в узел, образуя характерные утолщения (например, на концах хромосом), либо двуцепочечная ДНК на каком-то богатом гуанином участке образует локальный квадруплекс.

Наиболее изучено существование квадруплексов на концах хромосом - на теломерах и в онкопромоторах. Однако до сих пор полное представление о локализации такой ДНК в человеческих хромосомах не известно.

Все эти необычные структуры ДНК в линейной форме нестабильны по сравнению с В-формой ДНК. Однако ДНК часто существует в кольцевой форме топологического напряжения, когда у нее имеется так называемая сверхспирализация. В этих условиях легко образуются неканонические структуры ДНК: Z-формы, "кресты" и "шпильки", H-формы, гуаниновые квадруплексы и i-мотив.

  • Суперспирализированная форма - отмечается при выделении из ядра клетки без повреждения пентозо-фосфатного остова. Имеет форму сверхскрученных замкнутых колец. В сверхскрученном состоянии двойная спираль ДНК хотя бы один раз "перекручена сама на себя", т. е. содержит хотя бы один супервиток (принимает форму восьмерки).
  • Релаксированное состояние ДНК - наблюдается при одиночном разрыве (разрыве одной нити). При этом супервитки исчезают и ДНК принимает форму замкнутого кольца.
  • Линейная форма ДНК - наблюдается при разрыве двух нитей двойной спирали.
Все три перечисленные формы ДНК легко разделяются при гельэлекрофорезе.

Третичная структура ДНК

Третичная структура ДНК образуется в результате дополнительного скручивания в пространстве двуспиральной молекулы - ее суперспирализации. Суперспирализации молекулы ДНК в эукариотических клетках в отличие от прокариот осуществляется в форме комплексов с белками.

ДНК эукариот почти вся находится в хромосомах ядер, лишь небольшое количество ее содержится в митохондриях, а у растений и в пластидах. Основное вещество хромосом эукариотических клеток (в том числе и хромосом человека) - это хроматин, состоящий из двухцепочечной ДНК, гистоновых и негистоновых белков.

Гистоновые белки хроматина

Гистоны - простые белки, составляют до 50% хроматина. Во всех изученных клетках животных и растений обнаружено пять основных классов гистонов: H1, H2A, H2B, H3, H4, различающихся по размерам, аминокислотному составу и величине заряда (всегда положительный).

Гистон Н1 млекопитающих состоит из одной полипептидной цепи, содержащей примерно 215 аминокислот; размеры других же гистонов варьируют от 100 до 135 аминокислот. Все они спирализованы и скручены в глобулу диаметром около 2,5 нм, содержат необычно большое количество положительно заряженных аминокислот лизина и аргинина. Гистоны могут быть ацетилированы, метилированы, фосфорилированы, поли(АДФ)-рибозилированы, а гистоны Н2А и Н2В – ковалентно связаны с убиквитином. Какова роль таких модификаций в становлении структуры и выполнении функций гистонами до конца пока не выяснено. Предполагается, что в этом заключается их способность взаимодействовать с ДНК и обеспечивать один из механизмов регуляции действия генов.

Гистоны взаимодействуют с ДНК в основном через ионные связи (солевые мостики), образующиеся между отрицательно заряженными фосфатными группами ДНК и положительно заряженными лизиновыми и аргининовыми остатками гистонов.

Негистоновые белки хроматина

Негистоновые белки в отличие от гистонов очень разнообразны. Выделено до 590 разных фракций ДНК-связывающих негистоновых белков. Их еще называют кислыми белками, так как в их структуре преобладают кислые аминокислоты (они являются полианионами). С разнообразием негистоновых белков связывают специфическую регуляцию активности хроматина. Например ферменты, необходимые для репликации и экспрессии ДНК, могут связываться с хроматином временно. Другие белки, скажем, принимающие участие в различных процессах регуляции, связываются с ДНК только в специфических тканях или на определенных стадиях дифференциации. Каждый белок комплементарен определённой последовательности нуклеотидов ДНК (сайт ДНК). К этой группе относят:

  • семейство сайт-специфических белков типа "цинковые пальцы". Каждый "цинковый палец" узнаёт определённый сайт, состоящий из 5 нуклеотидных пар.
  • семейство сайт-специфических белков - гомодимеры. Фрагмент такого белка, контактирующий с ДНК, имеет структуру "спираль-поворот-спираль".
  • белки высокой подвижности (HMG-белки - от англ, high mobility gel proteins) - группа структурных и регуляторных белков, которые постоянно ассоциированы с хроматином. Они имеют молекулярную массу менее 30 кД и характеризуются высоким содержанием заряженных аминокислот. Благодаря небольшой молекулярной массе HMG-белки обладают высокой подвижностью при электрофорезе в полиакриламидном геле.
  • ферменты репликации, транскрипции и репарации.

При участии структурных, регуляторных белков и ферментов, участвующих в синтезе ДНК и РНК, нить нуклеосом преобразуется в высококонденсированный комплекс белков и ДНК. Образованная структура в 10 000 раз короче исходной молекулы ДНК.

Хроматин

Хроматин - это комплекс белков с ядерной ДНК и неорганическими веществами. Основная часть хроматина неактивна. Она содержит плотно упакованную, конденсированную ДНК. Это гетерохроматин. Различают конститутивный, генетически неактивный хроматин (сателлитная ДНК) состоящий из неэкспрессируемых областей, и факультативный - неактивный в ряду поколений, но при определенных обстоятельствах способный эспрессировать.

Активный хроматин (эухроматин) неконденсированный, т.е. упакован менее плотно. В разных клетках его содержание составляет от 2 до 11%. В клетках головного мозга его больше всего - 10-11%, в клетках печени - 3-4 и почек - 2-3%. Отмечается активная транскрипция эухроматина. При этом его структурная организация позволяет использовать одну и ту же генетическую информацию ДНК, присущую данному виду организма, по-разному в специализированных клетках.

В электронном микроскопе изображение хроматина напоминает бусы: шаровидные утолщения размером около 10 нм, разделенные нитевидными перемычками. Эти шаровидные утолщения названы нуклеосомами. Нуклеосома является структурной единицей хроматина. Каждая нуклеосома содержит сверхспиральный сегмент ДНК длиной 146 пар нуклеотидов, намотанный с образованием 1,75 левых витков на нуклеосомный кор. Нуклеосомный кор – это гистоновый октамер, состоящий из гистонов Н2А, Н2В, Н3 и Н4, по две молекулы каждого вида (рис. 9), который выглядит как диск диаметром 11 нм и толщиной 5,7 нм. Пятый гистон, Н1, не входит в состав нуклеосомного кора и не участвует в процессе наматывания ДНК на гистоновый октамер. Он контактирует с ДНК в тех местах, где двойная спираль входит и выходит из нуклеосомного кора. Это межкоровые (линкерные) участки ДНК, длина которых варьирует в зависимости от типа клеток от 40 до 50 нуклеотидных пар. В результате этого варьирует и длина фрагмента ДНК, входящего в состав нуклеосом (от 186 до 196 нуклеотидных пар).

В состав нуклеосом входит примерно 90% ДНК, остальная ее часть приходится на линкер. Считается, что нуклеосомы - это фрагменты "молчащего" хроматина, а линкер - активного. Однако нуклеосомы могут развертываться и переходить в линейную форму. Развернутые нуклеосомы являются уже активным хроматином. Так наглядно проявляется зависимость функции от структуры. Можно считать, что чем больше хроматина находится в составе глобулярных нуклеосом, тем менее он активен. Очевидно, в разных клетках неодинаковая доля покоящегося хроматина связана с количеством таких нуклеосом.

На электронно-микроскопических фотографиях в зависимости от условий выделения и степени растяжения хроматин может выглядеть не только как длинная нить с утолщениями – "бусинками" нуклеосом, но и как более короткая и более плотная фибрилла (волокно) диаметром 30 нм, образование которой наблюдается при взаимодействии гистона Н1, связанного с линкерным участком ДНК и гистона Н3, что приводит к дополнительному скручиванию спирали из шести нуклеосом на виток с образованием соленоида диаметром 30 нм. При этом гистоновый белок может препятствовать транскрипции ряда генов и таким образом регулировать их активность.

В результате описанных выше взаимодействий ДНК с гистонами сегмент двойной спирали ДНК из 186 пар оснований со средним диаметром 2 нм и длиной 57 нм превращается в спираль диаметром 10 нм и длиной 5 нм. При последующем сжатии этой спирали до волокна диаметром 30 нм степень конденсации увеличивается еще в шесть раз.

В конечном итоге упаковка дуплекса ДНК с пятью гистонами приводит к 50-кратной конденсации ДНК. Однако даже столь высокая степень конденсации не может объяснить почти 50 000 - 100 000-кратное уплотнение ДНК в метафазной хромосоме. К сожалению детали дальнейшей упаковки хроматина вплоть до метафазной хромосомы пока не известны, поэтому можно рассматривать лишь общие особенности этого процесса.

Уровни компактизации ДНК в хромосомах

Каждая молекула ДНК упакована в отдельную хромосому. В диплоидных клетках человека содержится 46 хромосом, которые располагаются в ядре клетки. Общая длина ДНК всех хромосом клетки составляет 1,74 м, однако диаметр ядра, в которое упакованы хромосомы, в миллионы раз меньше. Такая компактная укладка ДНК в хромосомах и хромосом в ядре клетки обеспечивается разнообразными, гистоновыми и негистоновыми белками, взаимодействующими в определенной последовательности с ДНК (см выше). Компактизация ДНК в хромосомах позволяет уменьшить ее линейные размеры примерно в 10 000 раз - условно с 5 см до 5 мкм. Выделяют несколько уровней компактизации (рис. 10).

  • двойная спираль ДНК - отрицательно заряженная молекула диаметром 2 нм и длиной несколько см.
  • нуклеосомный уровень - хроматин выглядит в электронном микроскопе как цепочка "бусин" – нуклеосом - "на нити". Нуклеосома - это универсальная структурная единица, которая обнаруживается как в эухроматине, так и в гетерохроматине, в интерфазном ядре и метафазных хромосомах.

    Нуклеосомный уровень компактизации обеспечивается специальными белками - гистонами. Восемь положительно заряженных гистоновых доменов образуют кор (сердцевину) нуклеосомы на которую наматывается отрицательно заряженная молекула ДНК. Это дает укорочение в 7 раз, при этом диаметр увеличивается с 2 до 11 нм.

  • соленоидный уровень

    Соленоидный уровень организации хромосом характеризуется скручиванием нуклеосомной нити и образованием из нее более толстых фибрилл 20-35 нм в диаметре - соленоидов или супербидов. Шаг соленоида равен 11 нм, на один виток приходится около 6-10 нуклеосом. Соленоидная упаковка считается наиболее вероятной, чем супербидная, согласно которой фибрилла хроматина диаметром 20-35 нм представляет собой цепь гранул, или супербидов, каждая из которых состоит из восьми нуклеосом. На соленоидном уровне линейный размер ДНК сокращается в 6-10 раз, диаметр увеличивается до 30 нм.

  • петлевой уровень

    Петлевой уровень обеспечивается негистоновыми сайт-специфическими ДНК-связывающими белками, которые распознают определенные последовательности ДНК и связываются с ними, образуя петли примерно по 30-300 тысяч пар оснований. Петля обеспечивает экспрессию генов, т.е. петля является не только структурным, но и функциональным образованием. Укорочение на этом уровне происходит в 20-30 раз. Диаметр увеличивается до 300 нм. Петлеобразные структуры типа "ламповых щеток" в ооцитах земноводных можно видеть на цитологических препаратах. Эти петли, видимо, суперспирализованы и представляют собой домены ДНК, соответствующие, вероятно, единицам транскрипции и репликации хроматина. Специфические белки фиксируют основания петель и, возможно, некоторые их внутренние участки. Петлеобразная доменная организация способствует укладке хроматина в метафазных хромосомах в спиральные структуры более высоких порядков.

  • доменный уровень

    Доменный уровень организации хромосом изучен недостаточно. На данном уровне отмечается образование петлевых доменов - структур из нитей (фибрилл) толщиной 25-30 нм, которые содержат 60% белка, 35% ДНК и 5% РНК, практически не видны во всех фазах клеточного цикла за исключением митоза и несколько беспорядочно распределены по клеточному ядру. Петлеобразные структуры типа "ламповых щеток" в ооцитах земноводных можно видеть на цитологических препаратах.

    Петлевые домены своим основанием прикрепляются к внутриядерному белковому матриксу в так называемых встроенных местах прикрепления, часто обозначаемых как MAR/SAR-последовательности (MAR, от англ. matrix associated region; SAR, от англ. scaffold attachment regions) – фрагментах ДНК протяженностью в несколько сотен пар оснований, которые характеризуются высоким содержанием (>65%) А/Т пар нуклеотидов. Каждый домен, по-видимому, имеет одну точку начала репликации и функционирует как автономная сверхспиральная единица. Любой петельный домен содержит множество единиц транскрипции, функционирование которых, вероятно, координируется – весь домен находиться либо в активном, либо в неактивном состоянии.

    На доменном уровне в результате последовательной упаковки хроматина присходит уменьшение линейных размеров ДНК примерно в 200 раз (700 нм).

  • хромосомный уровень

    На хромосомном уровне происходит конденсация профазной хромосомы в метафазную с уплотнением петельных доменов вокруг осевого каркаса негистоновых белков. Эта суперспирализация сопровождается фосфорилированием в клетке всех молекул H1. В результате метафазную хромосому можно изобразить в виде плотно уложенных соленоидных петель, свернутых в тугую спираль. Типичная хромосома человека может содержать до 2600 петель. Толщина такой структуры достигает 1400 нм (две хроматиды), а молекула ДНК при этом укорачивается в 104 раз, т.е. с 5 см растянутой ДНК до 5 мкм.

Функции хромосом

Во взаимодействии с внехромосомными механизмами хромосомы обеспечивают

  1. хранение наследственной информации
  2. использование этой информации для создания и поддержания клеточной организации
  3. регуляцию считывания наследственной информации
  4. самоудвоение генетического материала
  5. передачу генетического материала от материнской клетки дочерним.

Существуют данные, что при активировании участка хроматина, т.е. при транскрипции, с него обратимо удаляются сначала гистон H1, а затем и октет гистонов. Это вызывает деконденсацию хроматина, последовательный переход 30-нанометровой фибриллы хроматина в 10-нанометровую нить и ее дальнейшее разворачивание в участки свободной ДНК, т.е. утрату нуклеосомной структуры.

Дезоксирибонуклеиновая кислота (ДНК ) - макромолекула (одна из трёх основных, две другие - РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.

В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами. Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать геном ДНК-содержащих вирусов.

С химической точки зрения ДНК - это длинная полимерная молекула, состоящая из повторяющихся блоков - нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы (фосфодиэфирные связи). В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула спирализована. В целом структура молекулы ДНК получила название «двойной спирали».

Расшифровка структуры ДНК (1953 г.) стала одним из поворотных моментов в истории биологии. За выдающийся вклад в это открытие Фрэнсису Крику, Джеймсу Уотсону и Морису Уилкинсу была присуждена Нобелевская премия по физиологии или медицине 1962 г. Розалинд Франклин, которая получила рентгенограммы, без которых Уотсон и Крик не имели бы возможность сделать выводы о структуре ДНК, умерла в 1958 г. от рака, а Нобелевскую премию, увы, не дают посмертно.

    История изучения

    Структура молекулы

    Нуклеотиды

    Двойная спираль

    Образование связей между спиралями

    Химические модификации оснований

    Повреждения ДНК

    Суперскрученность

    Структуры на концах хромосом

    Биологические функции

    Структура генома

    Последовательности генома, не кодирующие белок

    Транскрипция и трансляция

    Репликация

    Взаимодействие с белками

    Структурные и регуляторные белки

    Ферменты, модифицирующие ДНК

    Топоизомеразы и хеликазы

    Нуклеазы и лигазы

    Полимеразы

    Генетическая рекомбинация

    Эволюция метаболизма, основанного на ДНК

    Список литературы

    История изучения

ДНК как химическое вещество была выделена Иоганном Фридрихом Мишером в 1868 году из остатков клеток, содержащихся в гное. Он выделил вещество, в состав которого входят азот и фосфор. Вначале новое вещество получило название нуклеин , а позже, когда Мишер определил, что это вещество обладает кислотными свойствами, вещество получило название нуклеиновая кислота . Биологическая функция новооткрытого вещества была неясна, и долгое время ДНК считалась запасником фосфора в организме. Более того, даже в начале XX века многие биологи считали, что ДНК не имеет никакого отношения к передаче информации, поскольку строение молекулы, по их мнению, было слишком однообразным и не могло содержать закодированную информацию.

Постепенно было доказано, что именно ДНК, а не белки, как считалось раньше, является носителем генетической информации. Одно из первых решающих доказательств принесли эксперименты О. Эвери, Колина Мак-Леода и Мклин Мак-Карти (1944 г.) по трансформации бактерий. Им удалось показать, что за так называемую трансформацию (приобретение болезнетворных свойств безвредной культурой в результате добавления в неё мёртвых болезнетворных бактерий) отвечают выделенная из пневмококков ДНК. Эксперимент американских учёных Алфреда Херши и Марты Чейз (эксперимент Херши Чейз 1952 г.) с помеченными радиоактивными изотопами белками и ДНК бактериофагов показали, что в заражённую клетку передаётся только нуклеиновая кислота фага, а новое поколение фага содержит такие же белки и нуклеиновую кислоту, как исходный фаг.

Вплоть до 50-х годов XX века точное строение ДНК, как и способ передачи наследственной информации, оставалось неизвестным. Хотя и было доподлинно известно, что ДНК состоит из нескольких цепочек, состоящих из нуклеотидов, никто не знал точно, сколько этих цепочек и как они соединены.

Структура двойной спирали ДНК была предложена Френсисом Криком и Джеймсом Уотсоном в 1953 году на основании рентгеноструктурных данных, полученных Морисом Уилкинсом и Розалинд Франклин, и «правил Чаргаффа», согласно которым в каждой молекуле ДНК соблюдаются строгие соотношения, связывающие между собой количество азотистых оснований разных типов. Позже предложенная Уотсоном и Криком модель строения ДНК была доказана, а их работа отмечена Нобелевской премией по физиологии или медицине 1962 г. Среди лауреатов не было скончавшейся к тому времени от рака Розалинды Франклин, так как премия не присуждается посмертно.

Интересно, что в 1957 году американцы Александер Рич, Гэри Фелзенфелд и Дэйвид Дэйвис описали нуклеиновую кислоту, составленную тремя спиралями. А в 1985-1986 годах Максим Давидович Франк-Каменецкий в Москве показал, как двухспиральная ДНК складывается, в так называемую H-форму, составленную уже не двумя, а тремя нитями ДНК.

    Структура молекулы.

Дезоксирибонуклеиновая кислота (ДНК) представляет собой биополимер (полианион), мономером которого является нуклеотид.

Каждый нуклеотид состоит из остатка фосфорной кислоты, присоединённого по 5"-положению к сахару дезоксирибозе, к которому также через гликозидную связь (C-N) по 1"-положению присоединено одно из четырёх азотистых оснований. Именно наличие характерного сахара и составляет одно из главных различий между ДНК и РНК, зафиксированное в названиях этих нуклеиновых кислот (в состав РНК входит сахар рибоза). Пример нуклеотида - аденозинмонофосфат, у которого основанием, присоединённым к фосфату и рибозе, является аденин (показан на рисунке).

Исходя из структуры молекул, основания, входящие в состав нуклеотидов, разделяют на две группы: пурины (аденин [A] и гуанин [G]) образованы соединёнными пяти- и шестичленным гетероциклами; пиримидины (цитозин [C] и тимин [T]) - шестичленным гетероциклом.

В виде исключения, например, у бактериофага PBS1, в ДНК встречается пятый тип оснований - урацил ([U]), пиримидиновое основание, отличающееся от тимина отсутствием метильной группы на кольце, обычно заменяющее тимин в РНК.

Следует отметить, что тимин и урацил не так строго приурочены к ДНК и РНК соответственно, как это считалось ранее. Так, после синтеза некоторых молекул РНК значительное число урацилов в этих молекулах метилируется с помощью специальных ферментов, превращаясь в тимин. Это происходит в транспортных и рибосомальных РНК.

    Двойная спираль.

Полимер ДНК обладает довольно сложной структурой. Нуклеотиды соединены между собой ковалентно в длинные полинуклеотидные цепи. Эти цепи в подавляющем большинстве случаев (кроме некоторых вирусов, обладающих одноцепочечными ДНК-геномами) попарно объединяются при помощи водородных связей во вторичную структуру, получившую название двойной спирали. Остов каждой из цепей состоит из чередующихся фосфатов сахаров. Внутри одной цепи ДНК соседние нуклеотиды соединены фосфодиэфирными связями, которые формируются в результате взаимодействия между 3"-гидроксильной (3"-ОН) группой молекулы дезоксирибозы одного нукдеотида и 5"-фосфатной группой (5"-РО 3) другого. Асимметричные концы цепи ДНК называются 3" (три прим) и 5" (пять прим). Полярность цепи играет важную роль при синтезе ДНК (удлинение цепи возможно только путём присоединения новых нуклеотидов к свободному 3"-концу).

Как уже было сказано выше, у подавляющего большинства живых организмов ДНК состоит не из одной, а из двух полинуклеотидных цепей. Эти две длинные цепи закручены одна вокруг другой в виде двойной спирали, стабилизированной водородными связями, образующимися между обращёнными друг к другу азотистыми основаниями входящих в неё цепей. В природе эта спираль, чаще всего, правозакрученная. Направления от 3"-конца к 5"-концу в двух цепях, из которых состоит молекула ДНК, противоположны (цепи «антипараллельны» друг другу).

Ширина двойной спирали составляет от 22 до 24 А, или 2,2 - 2,4 нм, длина каждого нуклеотида 3,3 Å (0,33 нм). Подобно тому, как в винтовой лестнице сбоку можно увидеть ступеньки, на двойной спирали ДНК в промежутках между фосфатным остовом молекулы можно видеть рёбра оснований, кольца которых расположены в плоскости, перпендикулярной по отношению к продольной оси макромолекулы.

В двойной спирали различают малую (12 Å) и большую (22 Å) бороздки. Белки, например, факторные транскрипции, которые присоединяются к определённым последовательностям в двухцепочечной ДНК, обычно взаимодействуют с краями оснований в большой бороздке, где те более доступны.

Каждое основание на одной из цепей связывается с одним определённым основанием на второй цепи. Такое специфическое связывание называется комплементарным. Пурины комплементарны пиримидинам (то есть способны к образованию водородных связей с ними): аденин образует связи только с тимином, а цитозин - с гуанином. В двойной спирали цепочки также связаны с помощью гидрофобных взаимодействий и стекинга, которые не зависят от последовательности оснований ДНК.

Комплементарность двойной спирали означает, что информация, содержащаяся в одной цепи, содержится и в другой цепи. Обратимость и специфичность взаимодействий между комплементарными парами оснований важна для репликации ДНК и всех остальных функций ДНК в живых организмах.

Так как водородные связи нековалентны, они легко разрываются и восстанавливаются. Цепочки двойной спирали могут расходиться как замок-молния под действием ферментов (хеликазы) или при высокой температуре. Разные пары оснований образуют разное количество водородных связей. АТ связаны двумя, ГЦ - тремя водородными связями, поэтому на разрыв ГЦ требуется больше энергии. Процент ГЦ-пар и длина молекулы ДНК определяют количество энергии, необходимой для диссоциации цепей: длинные молекулы ДНК с большим содержанием ГЦ более тугоплавки.

Части молекул ДНК, которые из-за их функций должны быть легко разделяемы, например ТАТА последовательность в бактериальных промоторах, обычно содержат большое количество А и Т.

Азотистые основания в составе ДНК могут быть ковалентно модифицированы, что используется при регуляции экспрессии генов. Например, в клетках позвоночных метилирование цитозина с образованием 5-метилцитозина используется соматическими клетками для передачи профиля генной экспрессии дочерним клеткам. Метилирование цитозина не влияет на спаривание оснований в двойной спирали ДНК. У позвоночных метилирование ДНК в соматических клетках ограничивается метилированием цитозина в последовательности ЦГ. Средний уровень метилирования отличается у разных организмов, так, у нематоды Caenorhabditis elegans метилирование цитозина не наблюдается, а у позвоночный обнаружен высокий уровень метилирования - до 1 %. Другие модификации оснований включают метилирование аденина у бактерий и гликозилирование урацила с образованием «J-основания» в кинетопластах.

Метилирование цитозина с образованием 5-метилцитозина в промоторной части гена коррелирует с его неактивным состоянием. Метилирование цитозина важно также для инактивации у млекопитающих. Метилирование ДНК используется в геномном импринтинге. Значительные нарушения профиля метилирования ДНК происходит при канцерогенезе.

Несмотря на биологическую роль, 5-метилцитозин может спонтанно утрачивать аминную группу (деаминироваться), превращаясь в тимин, поэтому метилированные цитозины являются источником повышенного числа мутаций.

НК может повреждаться разнообразными мутагенами, к которым относятся окисляющие и алкилирующие вещества, а также высокоэнергетическая электромагнитная радиация - ультрафиолетовое и рентгеновское излучение. Тип повреждения ДНК зависит от типа мутагена. Например, ультрафиолет повреждает ДНК путём образования в ней димеров тимина, которые возникают при образовании ковалентных связей между соседними основаниями.

Оксиданты, такие как свободные радикалы или пероксид водорода, приводят к нескольким типам повреждения ДНК, включая модификации оснований, в особенности гуанозина, а также двухцепочечные разрывы в ДНК. По некоторым оценкам, в каждой клетке человека окисляющими соединениями ежедневно повреждается порядка 500 оснований. Среди разных типов повреждений наиболее опасные - это двухцепочечные разрывы, потому что они трудно репарируются и могут привести к потерям участков хромосом (делециям) и транслокациям.

Многие молекулы мутагенов вставляются (интеркалируют) между двумя соседними парами оснований. Большинство этих соединений, например, этидий, даунорубицин, доксорубицин и талидомид имеют ароматическую структуру. Для того чтобы интеркалирующее соединение могло поместиться между основаниями, они должны разойтись, расплетая и нарушая структуру двойной спирали. Эти изменения в структуре ДНК мешают транскрипции и репликации, вызывая мутации. Поэтому интеркалирующие соединения часто являются канцерогенами, наиболее известные из которых - бензопирен, акридины, афлатоксин. Несмотря на эти негативные свойства, в силу их способности подавлять транскрипцию и репликацию ДНК, интеркалирующие соединения используются в химиотерапии для подавления быстро растущих клеток рака.

Если взяться за концы верёвки и начать скручивать их в разные стороны, она становится короче и на верёвке образуются «супервитки». Так же может быть суперскручена и ДНК. В обычном состоянии цепочка ДНК делает один оборот на каждые 10,4 основания, но в суперскрученном состоянии спираль может быть свёрнута туже или расплетена. Выделяют два типа суперскручивания: положительное - в направлении нормальных витков, при котором основания расположены ближе друг к другу; и отрицательное - в противоположном направлении. В природе молекулы ДНК обычно находятся в отрицательном суперскручивании, которое вносится ферментами - топоизомеразами. Эти ферменты удаляют дополнительное скручивание, возникающее в ДНК в результате транскрипции и репликации.

На концах линейных хромосом находятся специализированные структуры ДНК, называемые теломерами. Основная функция этих участков - поддержание целостности концов хромосом. Теломеры также защищают концы ДНК от деградации экзонуклеазами и предотвращают активацию системы репарации. Поскольку обычные ДНК-полимеразы не могут реплицировать 3" концы хромосом, это делает специальный фермент - теломераза.

В клетках человека теломеры часто представлены одноцепочечной ДНК и состоят из нескольких тысяч повторяющихся единиц последовательности ТТАГГГ. Эти последовательности с высоким содержанием гуанина стабилизируют концы хромосом, формируя очень необычные структуры, называемые G-квадроплексами и состоящие из четырёх, а не двух взаимодействующих оснований. Четыре гуаниновых основания, все атомы которых находятся в одной плоскости, образуют пластинку, стабилизированную водородными связями между основаниями и хелатированием в центре неё иона металла (чаще всего калия). Эти пластинки располагаются стопкой друг над другом.

На концах хромосом могут образовываться и другие структуры: основания могут быть расположены в одной цепочке или в разных параллельных цепочках. Кроме этих «стопочных» структур теломеры формируют большие петлеобразные структуры, называемые Т-петли или теломерные петли. В них одноцепочечная ДНК располагается в виде широкого кольца, стабилизированного теломерными белками. В конце Т-петли одноцепочечная теломерная ДНК присоединяется к двухцепочечной ДНК, нарушая спаривание цепочек в этой молекуле и образуя связи с одной из цепей. Это трёхцепочечное образование называется Д-петля.

ДНК является носителем генетической информации, записанной в виде последовательности нуклеотидов с помощью генетического кода. С молекулами ДНК связаны два основополагающих свойства живых организмов - наследственность и изменчивость. В ходе процесса, называемого репликацией ДНК, образуются две копии исходной цепочки, наследуемые дочерними клетками при делении, таким образом образовавшиеся клетки оказываются генетически идентичны исходной.

Генетическая информация реализуется при экспрессии геном в процессах транскрипции (синтеза молекул РНК на матрице ДНК) и трансляции (синтеза белков на матрице РНК).

Последовательность нуклеотидов «кодирует» информацию о различных типах РНК: информационных, или матричных (мРНК), рибосомальных (рРНК) и транспортных (тРНК). Все эти типы РНК синтезируются на основе ДНК в процессе транскрипции. Роль их в биосинтезе белков (процессе трансляции) различна. Информационная РНК содержит информацию о последовательности аминокислот в белке, рибосомальные РНК служат основой для рибосом (сложных нуклеопротеиновых комплексов, основная функция которых - сборка белка из отдельных аминокислот на основе иРНК), транспортные РНК доставляют аминокислоты к месту сборки белков - в активный центр рибосомы, «ползущей» по иРНК.

Большинство природных ДНК имеет двухцепочечную структуру, линейную (эукариоты, некоторые вирусы и отдельные роды бактерий) или кольцевую (прокариоты, хлоропласты и митохондрии). Линейную одноцепочечную ДНК содержат некоторые вирусы и бактериофаги. Молекулы ДНК находятся в плотно упакованном, конденсированном состоянии.В клетках эукариот ДНК располагается главным образом в ядре в виде набора хромосом. Бактериальная (прокариоты) ДНК обычно представлена одной кольцевой молекулой ДНК, расположенной в неправильной формы образовании в цитоплазме, называемым нуклеоидом. Генетическая информация генома состоит из генов. Ген - единица передачи наследственной информации и участок ДНК, который влияет на определённую характеристику организма. Ген содержит открытую рамку считывания, которая транскрибируется, а также регуляторные, например, промотор и энхансер, которые контролируют экспрессию открытых рамок считывания.

У многих видов только малая часть общей последовательности генома кодирует белки. Так, только около 1,5 % генома человека состоит из кодирующих белок экзонов, а больше 50 % ДНК человека состоит из некодирующих повторяющихся последовательностей ДНК. Причины наличия такого большого количества некодирующей ДНК в эукариотических геномах и огромная разница в размерах геномов (С-значение) - одна из неразрешённых научных загадок; исследования в этой области также указывают на большое количество фрагментов реликтовых вирусов в этой части ДНК.

В настоящее время накапливается всё больше данных, противоречащих идее о некодирующих последовательностях как «мусорной ДНК» (англ. junk DNA ). Теломеры и центромеры содержат малое число генов, но они важны для функционирования и стабильности хромосом. Часто встречающаяся форма некодирующих последовательностей человека - псевдогены, копии генов, инактивированные в результате мутаций. Эти последовательности нечто вроде молекулярных мскопаемых, хотя иногда они могут служить исходным материалом для дупликации и последующей дивергенции генов. Другой источник разнообразия белков в организме - это использование интронов в качестве «линий разреза и склеивания» в альтернативном сплайсинге. Наконец, не кодирующие белок последовательности могут кодировать вспомогательные клеточные РНК, например, мяРНК. Недавнее исследование транскрипции генома человека показало, что 10 % генома даёт начало полиаденилированным РНК, а исследование и генома мыши показало, что 62 % его транскрибируется.

Генетическая информация, закодированная в ДНК, должна быть прочитана и в конечном итоге выражена в синтезе различных биополимеров, из которых состоят клетки. Последовательность оснований в цепочке ДНК напрямую определяет последовательность оснований в РНК, на которую она «переписывается» в процессе, называемом транскрипцией. В случае мРНК эта последовательность определяет аминокислоты белка. Соотношение между нуклеотидной последовательностью мРНК и аминокислотной последовательностью определяется правилами трансляции, которые называются генетическим кодом. Генетический код состоит из трёхбуквенных «слов», называемых кодонами, состоящих из трёх нуклеотидов (то есть ACT CAG TTT и т. п.). Во время транскрипции нуклеотиды гена копируются на синтезируемую РНК РНК-полимеразой. Эта копия в случае мРНК декодируетсярибосомой, которая «читает» последовательность мРНК, осуществляя спаривание матричной РНК с транспортными, которые присоединены к аминокислотам. Поскольку в трёхбуквенных комбинациях используются 4 основания, всего возможны 64 кодона (4³ комбинации). Кодоны кодируют 20 стандартных аминокислот, каждой из которых соответствует в большинстве случаев более одного кодона. Один из трёх кодонов, которые располагаются в конце мРНК, не означает аминокислоту и определяет конец белка, это «стоп» или «нонсенс» кодоны - TAA, TGA, TAG.

Деление клеток необходимо для размножения одноклеточного и роста многоклеточного организма, но до деления клетка должна удвоить геном, чтобы дочерние клетки содержали ту же генетическую информацию, что и исходная клетка. Из нескольких теоретически возможных механизмов удвоения (репликации) ДНК реализуется полуконсервативный. Две цепочки разделяются, а затем каждая недостающая комплементарная последовательность ДНК воспроизводится ферментом ДНК-полимеразой. Этот фермент строит полинуклеотидную цепь, находя правильное основание через комплементарное спаривание оснований и присоединяя его к растущей цепочке. ДНК-полимераза не может начинать новую цепь, а только лишь наращивать уже существующую, поэтому она нуждается в короткой цепочке нуклеотидов (праймере), синтезируемой праймазой. Так как ДНК-полимеразы могут строить цепочку только в направлении 5" --> 3", для копирования антипараллельных цепей используются разные механизмы.

Все функции ДНК зависят от её взаимодействия с белками. Взаимодействия могут быть неспецифическими, когда белок присоединяется к любой молекуле ДНК, или зависеть от наличия особой последовательности. Ферменты также могут взаимодействовать с ДНК, из них наиболее важные - это РНК-полимеразы, которые копируют последовательность оснований ДНК на РНК в транскрипции или при синтезе новой цепи ДНК - репликации.

Хорошо изученными примерами взаимодействия белков и ДНК, не зависящего от нуклеотидной последовательности ДНК, является взаимодействие со структурными белками. В клетке ДНК связана с этими белками, образуя компактную структуру, которая называется хроматин. У прокариот хроматин образован при присоединении к ДНК небольших щелочных белков - гистонов, менее упорядоченный хроматин прокариот содержит гистон-подобные белки. Гистоны формируют дискообразную белковую структуру -нуклеосому, вокруг каждой из которых вмещается два оборота спирали ДНК. Неспецифические связи между гистонами и ДНК образуются за счёт ионных связей щелочных аминокислот гистонов и кислотных остатков сахарофосфатного остова ДНК. Химические модификации этих аминокислот включают метилирование, фосфорилирование и ацетилирование. Эти химические модификации изменяют силу взаимодействия между ДНК и гистонами, влияя на доступность специфических последовательностей для факторов транскрипции и изменяя скорость транскрипции. Другие белки в составе хроматина, которые присоединяются к неспецифическим последовательностям - белки с высокой подвижностью в гелях, которые ассоциируют большей частью с согнутой ДНК. Эти белки важны для образования в хроматине структур более высокого порядка. Особая группа белков, присоединяющихся к ДНК, - это белки, которые ассоциируют с одноцепочечной ДНК. Наиболее хорошо охарактеризованный белок этой группы у человека - репликационный белок А, без которого невозможно протекание большинства процессов, где расплетается двойная спираль, включая репликацию, рекомбинацию и репарацию. Белки этой группы стабилизируют одноцепочечную ДНК и предотвращают формирование стеблей-петель или деградации нуклеазами.

В то же время другие белки узнают и присоединяются к специфическим последовательностям. Наиболее изученная группа таких белков - различные классы факторов транскрипции, то есть белки, регулирующие транскрипцию. Каждый из этих белков узнаёт свою последовательность, часто в промоторе, и активирует или подавляет транскрипцию гена. Это происходит при ассоциации факторов транскрипции с РНК-полимеразой либо напрямую, либо через белки-посредники. Полимераза ассоциирует сначала с белками, а потом начинает транскрипцию. В других случаях факторы транскрипции могут присоединяться к ферментам, которые модифицируют находящиеся на промоторах гистоны, что изменяет доступность ДНК для полимераз.

Так как специфические последовательности встречаются во многих местах генома, изменения в активности одного типа фактора транскрипции могут изменить активность тысяч генов. Соответственно, эти белки часто регулируются в процессах ответа на изменения в окружающей среде, развития организма и дифференцировки клеток. Специфичность взаимодействия факторов транскрипции с ДНК обеспечивается многочисленными контактами между аминокислотами и основаниями ДНК, что позволяет им «читать» последовательность ДНК. Большинство контактов с основаниями происходит в главной бороздке, где основания более доступны.

Хорошо изученными примерами взаимодействия белков и ДНК, не зависящего от нуклеотидной последовательности ДНК, является взаимодействие со структурными белками. В клетке ДНК связана с этими белками, образуя компактную структуру, которая называется хроматин. У прокариот хроматин образован при присоединении к ДНК небольших щелочных белков - гистонов, менее упорядоченный хроматин прокариот содержит гистон-подобные белки. Гистоны формируют дискообразную белковую структуру - нуклеосому, вокруг каждой из которых вмещается два оборота спирали ДНК. Неспецифические связи между гистонами и ДНК образуются за счёт ионных связей щелочных аминокислот гистонов и кислотных остатков сахарофосфатного остова ДНК. Химические модификации этих аминокислот включают метилирование, фосфорилирование и ацетилирование. Эти химические модификации изменяют силу взаимодействия между ДНК и гистонами, влияя на доступность специфических последовательностей для факторов транскрипции и изменяя скорость транскрипции. Другие белки в составе хроматина, которые присоединяются к неспецифическим последовательностям - белки с высокой подвижностью в гелях, которые ассоциируют большей частью с согнутой ДНК. Эти белки важны для образования в хроматине структур более высокого порядка. Особая группа белков, присоединяющихся к ДНК, - это белки, которые ассоциируют с одноцепочечной ДНК. Наиболее хорошо охарактеризованный белок этой группы у человека - репликационный белок А, без которого невозможно протекание большинства процессов, где расплетается двойная спираль, включая репликацию, рекомбинацию и репарацию. Белки этой группы стабилизируют одноцепочечную ДНК и предотвращают формирование стеблей-петель или деградации нуклеазами.


Многие авторы сравнивают города с живыми организмами, а то и вообще с людьми, придавая им метафизическую способность иметь чувства, органы и даже мысли. А китайский художник Лю Синьцзян (Lu Xinjian) даже нарисовал структуру ДНК , причем, разную для различных мегаполисов мира .




Сайт Культурология.РФ научил нас тому, что географическую карту можно сделать буквально из чего угодно. К примеру, или .



Весьма необычные карты крупнейших мегаполисов мира создал и китайский художник Лю Синьцзян. Впрочем, сам он говорит, что нарисовал ДНК этих городов.
Начался этот необычный проект Лю Синьцзяна с того, что он рассматривал через программу Google Eatrh спутниковые снимки разных городов мира. Уже тогда она начал делать наброски, пытаясь представить карты мегаполисов в виде условных линий и значков.



Со временем эти наброски были перенесены в цифровой формат и обработаны при помощи программы Adobe Illustrator. Так и появились картины из цикла «City DNA» («ДНК Городов»).



Это только при первом взгляде на работы Лю Синьцзяна кажется, что там нарисованы лишь хаотически расположенные линии и другие геометрические элементы. На самом деле, все эти изображения имеют четкую топографическую структуру, основанную на топографии таких городов как Москва, Лос-Анджелес, Токио, Шанхай, Стокгольм и т.д.



Так что любой человек, знакомый с картами этих мегаполисов, легко опознает в работах Лю Синьцзяна тот или иной город. И это несмотря на то, что некоторые из картин стилизованы под нечто узнаваемое совершенно по другим источникам. Как, к примеру, ДНК-карта Нью-Йорка, в которой угадывается поле игры Pac-Man.