Меню
Бесплатно
Главная  /  Детские болезни  /  Как решать дробные показательные уравнения. Что такое показательное уравнение и как его решать

Как решать дробные показательные уравнения. Что такое показательное уравнение и как его решать

В этой статье вы познакомитесь со всеми типами показательных уравнений и алгоритмами их решения, научитесь распознавать, к какому типу принадлежит показательное уравнение , которое вам надо решить, и применять для его решения соответствующий метод. Подробное решение примеров показательных уравнений каждого типа вы сможете посмотреть в соответствующих ВИДЕОУРОКАХ.

Показательным уравнением называется уравнение, в котором неизвестное содержится в показателе степени.

Прежде чем начать решать показательное уравнение, полезно сделать несколько предварительных действий , которые могут значительно облегчить ход его решения. Вот эти действия:

1. Разложите все основания степеней на простые множители.

2. Корни представьте в виде степени.

3. Десятичные дроби представьте в виде обыкновенных.

4. Смешанные числа запишите в виде неправильных дробей.

Пользу этих действий вы осознаете в процессе решения уравнений.

Рассмотрим основные типы показательных уравнений и алгоритмы их решения.

1. Уравнение вида

Это уравнение равносильно уравнению

Посмотрите в этом ВИДЕОУРОКЕ решение уравнения этого типа.

2. Уравнение вида

В уравнениях этого типа:

б) коэффициенты при неизвестном в показателе степени равны.

Чтобы решить это уравнение, нужно вынести за скобку множитель в наименьшей степени.

Пример решения уравнения этого типа:

посмотрите в ВИДЕОУРОКЕ.

3. Уравнение вида

Уравнения этого типа отличаются тем, что

а) все степени имеют одинаковые основания

б) коэффициенты при неизвестном в показателе степени разные.

Уравнения такого типа решаются с помощью замены переменных. Прежде чем вводить замену, желательно освободиться от свободных членов в показателе степени. (, , и т.д)

Посмотрите в ВИДЕОУРОКЕ решение уравнения этого типа:

4. Однородные уравнения вида

Отличительные признаки однородных уравнений:

а) все одночлены имеют одинаковую степень,

б) свободный член равен нулю,

в) в уравнении присутствуют степени с двумя различными основаниями.

Однородные уравнения решаются по сходному алгоритму.

Чтобы решить уравнение такого типа, разделим обе части уравнения на (можно разделить на или на )

Внимание! При делении правой и левой части уравнения на выражение, содержащее неизвестное, можно потерять корни. Поэтому необходимо проверить, не являются ли корни того выражения, на которое мы делим обе части уравнения, корнями исходного уравнения.

В нашем случае, поскольку выражение не равно нулю ни при каких значениях неизвестного, мы можем делить на него без опаски. Разделим левую часть уравнения на это выражение почленно. Получим:

Сократим числитель и знаменатель второй и третьей дроби:

Введем замену:

Причем title="t>0">при всех допустимых значениях неизвестного.

Получим квадратное уравнение:

Решим квадратное уравнение, найдем значения , которые удовлетворяют условию title="t>0">, а затем вернемся к исходному неизвестному.

Смотрите в ВИДЕОУРОКЕ подробное решение однородного уравнения:


5. Уравнение вида

При решении этого уравнения будем исходить из того, что title="f(x)>0">

Исходное равенство выполняется в двух случаях:

1. Если , поскольку 1 в любой степени равна 1,

2. При выполнении двух условий:

Title="delim{lbrace}{matrix{2}{1}{{f(x)>0} {g(x)=h(x)} {x-8y+9z=0}}}{ }">

Посмотрите в ВИДЕОУРОКЕ подробное решение уравнения

Лекция: «Методы решения показательных уравнений».

1 . Показательные уравнения.

Уравнения, содержащие неизвестные в показателе степени, называются показательными уравнениями. Простейшим из них является уравнение аx = b, где а > 0, а ≠ 1.

1) При b < 0 и b = 0 это уравнение, согласно свойству 1 показательной функции, не имеет решения.

2) При b > 0 используя монотонность функции и теорему о корне, уравнение имеет единственный корень. Для того, чтобы его найти, надо b представить в виде b = aс, аx = bс ó x = c или x = logab.

Показательные уравнения путем алгебраических преобразований приводят к стандартным уравнения, которые решаются, используя следующие методы:

1) метод приведения к одному основанию ;

2) метод оценки;

3) графический метод;

4) метод введения новых переменных;

5) метод разложения на множители;

6) показательно – степенные уравнения;

7) показательные с параметром.

2 . Метод приведения к одному основанию.

Способ основан на следующем свойстве степеней: если равны две степени и равны их основания, то равны и их показатели, т. е. уравнение надо попытаться свести к виду

Примеры. Решить уравнение:

1 . 3x = 81;

Представим правую часть уравнения в виде 81 = 34 и запишем уравнение, равносильное исходному 3 x = 34; x = 4. Ответ: 4.

2. https://pandia.ru/text/80/142/images/image004_8.png" width="52" height="49">и перейдем к уравнению для показателей степеней 3x+1 = 3 – 5x; 8x = 4; x = 0,5. Ответ: 0,5.

3. https://pandia.ru/text/80/142/images/image006_8.png" width="105" height="47">

Заметим, что числа 0,2 , 0,04 , √5 и 25 представляют собой степени числа 5. Воспользуемся этим и преобразуем исходное уравнение следующим образом:

, откуда 5-x-1 = 5-2x-2 ó - x – 1 = - 2x – 2, из которого находим решение x = -1. Ответ: -1.

5. 3x = 5. По определению логарифма x = log35. Ответ: log35.

6. 62x+4 = 33x. 2x+8.

Перепишем уравнение в виде 32x+4.22x+4 = 32x.2x+8, т. е..png" width="181" height="49 src="> Отсюда x – 4 =0, x = 4. Ответ: 4.

7 . 2∙3x+1 - 6∙3x-2 - 3x = 9. Используя свойства степеней, запишем уравнение в виде 6∙3x - 2∙3x – 3x = 9 далее 3∙3x = 9, 3x+1 = 32 , т. е. x+1 = 2, x =1. Ответ: 1.

Банк задач №1.

Решить уравнение:

Тест №1.

1) 0 2) 4 3) -2 4) -4

А2 32x-8 = √3.

1)17/4 2) 17 3) 13/2 4) -17/4

А3

1) 3;1 2) -3;-1 3) 0;2 4) корней нет

1) 7;1 2) корней нет 3) -7;1 4) -1;-7

А5

1) 0;2; 2) 0;2;3 3) 0 4) -2;-3;0

А6

1) -1 2) 0 3) 2 4) 1

Тест №2

А1

1) 3 2) -1;3 3) -1;-3 4) 3;-1

А2

1) 14/3 2) -14/3 3) -17 4) 11

А3

1) 2;-1 2) корней нет 3) 0 4) -2;1

А4

1) -4 2) 2 3) -2 4) -4;2

А5

1) 3 2) -3;1 3) -1 4) -1;3

3 Метод оценки.

Теорема о корне : если функция f(x) возрастает (убывает) на промежутке I, число а –любое значение принимаемое f на этом промежутке, тогда уравнение f(x) = а имеет единственный корень на промежутке I.

При решении уравнений методом оценки используется эта теорема и свойства монотонности функции.

Примеры. Решить уравнения: 1. 4x = 5 – x.

Решение. Перепишем уравнение в виде 4x +x = 5.

1. если x = 1, то 41+1 = 5 , 5 = 5 верно, значит 1 – корень уравнения.

Функция f(x) = 4x – возрастает на R, и g(x) = x –возрастает на R => h(x)= f(x)+g(x) возрастает на R, как сумма возрастающих функций, значит x = 1 – единственный корень уравнения 4x = 5 – x. Ответ: 1.

2.

Решение. Перепишем уравнение в виде .

1. если x = -1, то , 3 = 3-верно, значит x = -1 – корень уравнения.

2. докажем, что он единственный.

3. Функция f(x) = - убывает на R, и g(x) = - x – убывает на R=> h(x) = f(x)+g(x) – убывает на R, как сумма убывающих функций. Значит по теореме о корне, x = -1 – единственный корень уравнения. Ответ: -1.

Банк задач №2. Решить уравнение

а) 4x + 1 =6 – x;

б)

в) 2x – 2 =1 – x;

4. Метод введения новых переменных.

Метод описан в п. 2.1. Введение новой переменной (подстановка) обычно производится после преобразований (упрощения) членов уравнения. Рассмотрим примеры.

Примеры. Р ешить уравнение: 1. .

Перепишем уравнение иначе: https://pandia.ru/text/80/142/images/image030_0.png" width="128" height="48 src="> т. е..png" width="210" height="45">

Решение. Перепишем уравнение иначе:

Обозначим https://pandia.ru/text/80/142/images/image035_0.png" width="245" height="57"> - не подходит.

t = 4 => https://pandia.ru/text/80/142/images/image037_0.png" width="268" height="51"> - иррациональное уравнение. Отмечаем, что

Решением уравнения является x = 2,5 ≤ 4, значит 2,5 – корень уравнения. Ответ: 2,5.

Решение. Перепишем уравнение в виде и разделим его обе части на 56x+6 ≠ 0. Получим уравнение

2x2-6x-7 = 2x2-6x-8 +1 = 2(x2-3x-4)+1, т..png" width="118" height="56">

Корни квадратного уравнения – t1 = 1 и t2 <0, т. е..png" width="200" height="24">.

Решение. Перепишем уравнение в виде

и заметим, что оно является однородным уравнением второй степени.

Разделим уравнение на 42x, получим

Заменим https://pandia.ru/text/80/142/images/image049_0.png" width="16" height="41 src="> .

Ответ: 0; 0,5.

Банк задач № 3. Решить уравнение

б)

г)

Тест № 3 с выбором ответа. Минимальный уровень.

А1

1) -0,2;2 2) log52 3) –log52 4) 2

А2 0,52x – 3 0,5x +2 = 0.

1) 2;1 2) -1;0 3) корней нет 4) 0

1) 0 2) 1; -1/3 3) 1 4) 5

А4 52x-5x - 600 = 0.

1) -24;25 2) -24,5; 25,5 3) 25 4) 2

1) корней нет 2) 2;4 3) 3 4) -1;2

Тест № 4 с выбором ответа. Общий уровень.

А1

1) 2;1 2) ½;0 3)2;0 4) 0

А2 2x – (0,5)2x – (0,5)x + 1 = 0

1) -1;1 2) 0 3) -1;0;1 4) 1

1) 64 2) -14 3) 3 4) 8

1)-1 2) 1 3) -1;1 4) 0

А5

1) 0 2) 1 3) 0;1 4) корней нет

5. Метод разложения на множители.

1. Решите уравнение: 5x+1 - 5x-1 = 24.

Решение..png" width="169" height="69"> , откуда

2. 6x + 6x+1 = 2x + 2x+1 + 2x+2.

Решение. Вынесем за скобки в левой части уравнения 6x, а в правой части – 2x. Получим уравнение 6x(1+6) = 2x(1+2+4) ó 6x = 2x.

Так как 2x >0 при всех x, можно обе части этого уравнения разделить на 2x, не опасаясь при этом потери решений. Получим 3x = 1ó x = 0.

3.

Решение. Решим уравнение методом разложения на множители.

Выделим квадрат двучлена

4. https://pandia.ru/text/80/142/images/image067_0.png" width="500" height="181">

x = -2 – корень уравнения.

Уравнение x + 1 = 0 " style="border-collapse:collapse;border:none">

А1 5x-1 +5x -5x+1 =-19.

1) 1 2) 95/4 3) 0 4) -1

А2 3x+1 +3x-1 =270.

1) 2 2) -4 3) 0 4) 4

А3 32x + 32x+1 -108 = 0. x=1,5

1) 0,2 2) 1,5 3) -1,5 4) 3

1) 1 2) -3 3) -1 4) 0

А5 2x -2x-4 = 15. x=4

1) -4 2) 4 3) -4;4 4) 2

Тест № 6 Общий уровень.

А1 (22x-1)(24x+22x+1)=7.

1) ½ 2) 2 3) -1;3 4) 0,2

А2

1) 2,5 2) 3;4 3) log43/2 4) 0

А3 2x-1-3x=3x-1-2x+2.

1) 2 2) -1 3) 3 4) -3

А4

1) 1,5 2) 3 3) 1 4) -4

А5

1) 2 2) -2 3) 5 4) 0

6. Показательно – степенные уравнения.

К показательным уравнениям примыкают так называемые показательно – степенные уравнения, т. е. уравнения вида (f(x))g(x) = (f(x))h(x).

Если известно, что f(x)>0 и f(x) ≠ 1, то уравнение, как и показательное, решается приравниванием показателей g(x) = f(x).

Если условием не исключается возможность f(x)=0 и f(x)=1, то приходится рассматривать и эти случаи при решении показательно – степенного уравнения.

1..png" width="182" height="116 src=">

2.

Решение. x2 +2x-8 – имеет смысл при любых x, т. к. многочлен, значит уравнение равносильно совокупности

https://pandia.ru/text/80/142/images/image078_0.png" width="137" height="35">

б)

7. Показательные уравнения с параметрами.

1. При каких значениях параметра p уравнение 4 (5 – 3)2 +4p2–3p = 0 (1) имеет единственное решение?

Решение. Введем замену 2x = t, t > 0, тогда уравнение (1) примет вид t2 – (5p – 3)t + 4p2 – 3p = 0. (2)

Дискриминант уравнения (2) D = (5p – 3)2 – 4(4p2 – 3p) = 9(p – 1)2.

Уравнение (1) имеет единственное решение, если уравнение (2) имеет один положительный корень. Это возможно в следующих случаях.

1. Если D = 0, то есть p = 1, тогда уравнение (2) примет вид t2 – 2t + 1 = 0, отсюда t = 1, следовательно, уравнение (1) имеет единственное решение x = 0.

2. Если p1, то 9(p – 1)2 > 0, тогда уравнение (2) имеет два различных корня t1 = p, t2 = 4p – 3. Условию задачи удовлетворяет совокупность систем

Подставляя t1 и t2 в системы, имеем

https://pandia.ru/text/80/142/images/image084_0.png" alt="no35_11" width="375" height="54"> в зависимости от параметра a?

Решение. Пусть тогда уравнение (3) примет вид t2 – 6t – a = 0. (4)

Найдем значения параметра a, при которых хотя бы один корень уравнения (4) удовлетворяет условию t > 0.

Введем функцию f(t) = t2 – 6t – a. Возможны следующие случаи.

https://pandia.ru/text/80/142/images/image087.png" alt="http://1september.ru/ru/mat/2002/35/no35_14.gif" align="left" width="215" height="73 src=">где t0 - абсцисса вершины параболы и D - дискриминант квадратного трехчлена f(t);

https://pandia.ru/text/80/142/images/image089.png" alt="http://1september.ru/ru/mat/2002/35/no35_16.gif" align="left" width="60" height="51 src=">

Случай 2. Уравнение (4) имеет единственное положительное решение, если

D = 0, если a = – 9, тогда уравнение (4) примет вид (t – 3)2 = 0, t = 3, x = – 1.

Случай 3. Уравнение (4) имеет два корня, но один из них не удовлетворяет неравенству t > 0. Это возможно, если

https://pandia.ru/text/80/142/images/image092.png" alt="no35_17" width="267" height="63">

Таким образом, при a 0 уравнение (4) имеет единственный положительный корень . Тогда уравнение (3) имеет единственное решение

При a < – 9 уравнение (3) корней не имеет.

если a < – 9, то корней нет; если – 9 < a < 0, то
если a = – 9, то x = – 1;

если a  0, то

Сравним способы решения уравнений (1) и (3). Отметим, что при решении уравнение (1) было сведено к квадратному уравнению, дискриминант которого - полный квадрат; тем самым корни уравнения (2) сразу были вычислены по формуле корней квадратного уравнения, а далее относительно этих корней были сделаны выводы. Уравнение (3) было сведено к квадратному уравнению (4), дискриминант которого не является полным квадратом, поэтому при решении уравнения (3) целесообразно использовать теоремы о расположении корней квадратного трехчлена и графическую модель. Заметим, что уравнение (4) можно решить, используя теорему Виета.

Решим более сложные уравнения.

Задача 3. Решите уравнение

Решение. ОДЗ: x1, x2.

Введем замену. Пусть 2x = t, t > 0, тогда в результате преобразований уравнение примет вид t2 + 2t – 13 – a = 0. (*)Найдем значения a, при которых хотя бы один корень уравнения (*) удовлетворяет условию t > 0.

https://pandia.ru/text/80/142/images/image098.png" alt="http://1september.ru/ru/mat/2002/35/no35_23.gif" align="left" width="71" height="68 src=">где t0 - абсцисса вершины f(t) = t2 + 2t – 13 – a, D - дискриминант квадратного трехчлена f(t).

https://pandia.ru/text/80/142/images/image100.png" alt="http://1september.ru/ru/mat/2002/35/no35_25.gif" align="left" width="360" height="32 src=">

https://pandia.ru/text/80/142/images/image102.png" alt="http://1september.ru/ru/mat/2002/35/no35_27.gif" align="left" width="218" height="42 src=">

Ответ: если a > – 13, a  11, a  5, то если a – 13,

a = 11, a = 5, то корней нет.

Список используемой литературы.

1. Гузеев основания образовательной технологии.

2. Гузеев технология: от приема до философии.

М. «Директор школы»№4, 1996 г.

3. Гузеев и организационные формы обучения.

4. Гузеев и практика интегральной образовательной технологии.

М. «Народное образование», 2001 г.

5. Гузеев из форм урока – семинара.

Математика в школе №2, 1987 г. с.9 – 11.

6. Селевко образовательные технологии.

М. «Народное образование», 1998 г.

7. Епишева школьников учиться математике.

М. «Просвещение», 1990 г.

8. Иванова подготовить уроки – практикумы.

Математика в школе №6, 1990 г. с. 37 – 40.

9. Смирнова модель обучения математике.

Математика в школе №1, 1997 г. с. 32 – 36.

10. Тарасенко способы организации практической работы .

Математика в школе №1, 1993 г. с. 27 – 28.

11. Об одном из видов индивидуальной работы.

Математика в школе №2, 1994 г. с.63 – 64.

12. Хазанкин творческие способности школьников.

Математика в школе №2, 1989 г. с. 10.

13. Сканави. Издатель, 1997 г.

14. и др. Алгебра и начала анализа. Дидактические материалы для

15. Кривоногов задания по математике.

М. «Первое сентября», 2002 г.

16. Черкасов. Справочник для старшеклассников и

поступающих в вузы. «А С Т - пресс школа», 2002 г.

17. Жевняк для поступающих в вузы.

Минск И РФ «Обозрение», 1996 г.

18. Письменный Д. Готовимся к экзамену по математике. М. Рольф, 1999 г.

19. и др. Учимся решать уравнения и неравенства.

М. «Интеллект – Центр», 2003 г.

20. и др. Учебно – тренировочные материалы для подготовки к Е Г Э.

М. «Интеллект – центр», 2003 г. и 2004 г.

21 и др. Варианты КИМ. Центр тестирования МО РФ, 2002 г., 2003г.

22. Гольдберг уравнения. «Квант» №3, 1971 г.

23. Волович М. Как успешно обучать математике.

Математика, 1997 г. №3.

24 Окунев за урок, дети! М. Просвещение, 1988 г.

25. Якиманская – ориентированное обучение в школе.

26. Лийметс работа на уроке. М. Знание, 1975 г.

Оборудование:

  • компьютер,
  • мультимедийный проектор,
  • экран,
  • Приложение 1 (слайдовая презентация в PowerPoint) “Методы решения показательных уравнений”
  • Приложение 2 (Решение уравнения типа “Три разных основания степеней” в Word)
  • Приложение 3 (раздаточный материал в Word для практической работы).
  • Приложение 4 (раздаточный материал в Word для домашнего задания).

Ход урока

1. Организационный этап

  • сообщение темы урока (записана на доске),
  • необходимость проведения обобщающего урока в 10-11 классах:

Этап подготовки учащихся к активному усвоению знаний

Повторение

Определение.

Показательным уравнением называется уравнение, содержащее переменную в показателе степени (отвечает учащийся).

Замечание учителя. Показательные уравнения относятся к классу трансцендентных уравнений. Это труднопроизносимое название говорит о том, что такие уравнения, вообще говоря, не решаются в виде формул.

Их можно решать только приближенно численными методами на компьютерах. А как же быть с экзаменационными задачами? Вся хитрость состоит в том, что экзаменатор так составляет задачу, что она как раз допускает аналитическое решение. Иными словами, Вы можете (и должны!) проделать такие тождественные преобразования, которые сводят данное показательное уравнение к самому простому показательному уравнению. Это самое простое уравнение так и называется: простейшее показательное уравнение. Оно решается логарифмированием.

Ситуация с решением показательного уравнения напоминает путешествие по лабиринту, который специально придуман составителем задачи. Из этих весьма общих рассуждений следуют вполне конкретные рекомендации.

Для успешного решения показательных уравнений необходимо:

1. Не только активно знать все показательные тождества, но и находить множества значений переменной, на которых эти тождества определены, чтобы при использовании этих тождеств не приобретать лишних корней, а тем более, – не терять решений уравнения.

2. Активно знать все показательные тождества.

3. Четко, подробно и без ошибок проделывать математические преобразования уравнений (переносить слагаемые из одной части уравнения в другую, не забыв про смену знака, приводить к общему знаменателю дроби и тому подобное). Это называется математической культурой. При этом сами выкладки должны делаться автоматически руками, а голова должна думать об общей путеводной нити решения. Делать преобразования надо как можно тщательней и подробней. Только это даст гарантию верного безошибочного решения. И помнить: небольшая арифметическая ошибка может просто создать трансцендентное уравнение, которое в принципе не решается аналитически. Выходит, Вы сбились с пути и уперлись в стенку лабиринта.

4. Знать методы решения задач (то есть знать все пути прохода по лабиринту решения). Для правильного ориентирования на каждом этапе Вам придется (сознательно или интуитивно!):

  • определить тип уравнения ;
  • вспомнить соответствующий этому типу метод решения задачи.

Этап обобщения и систематизации изученного материала.

Учителем совместно с учащимися с привлечением компьютера проводится обзорное повторение всех видов показательных уравнений и методов их решения, составляется общая схема. (Используется обучающая компьютерная программа Л.Я. Боревского "Курс математики – 2000", автор презентации в PowerPoint – Т.Н. Купцова.)

Рис. 1. На рисунке представлена общая схема всех типов показательных уравнений.

Как видно из этой схемы стратегия решения показательных уравнений состоит в том, чтобы привести данное показательное уравнение к уравнению, прежде всего, с одинаковыми основаниями степеней , а затем – и с одинаковыми показателями степеней.

Получив уравнение с одинаковыми основаниями и показателями степеней, Вы заменяете эту степень на новую переменную и получаете простое алгебраическое уравнение (обычно, дробно-рациональное или квадратное) относительно этой новой переменной.

Решив это уравнение и сделав обратную замену, Вы в результате приходите к совокупности простейших показательных уравнений, которые решаются в общем виде с помощью логарифмирования.

Особняком стоят уравнения, в которых встречаются лишь произведения (частные) степеней. Воспользовавшись показательными тождествами, удается эти уравнения привести сразу к одному основанию, в частности, – к простейшему показательному уравнению.

Рассмотрим, как решается показательное уравнение с тремя разными основаниями степеней.

(Если у учителя есть обучающая компьютерная программа Л.Я. Боревского "Курс математики – 2000" , то естественно работаем с диском, если нет – можно на каждую парту сделать распечатку такого типа уравнения из нее, представленную ниже.)

Рис. 2. План решения уравнения.

Рис. 3. Начало решения уравнения

Рис. 4. Окончание решения уравнения.

Выполнение практической работы

Определить тип уравнения и решить его.

1.
2.
3. 0,125
4.
5.
6.

Подведение итогов урока

Выставление оценок за урок.

Окончание урока

Для учителя

Схема ответов практической работы.

Задание: из списка уравнений выбрать уравнения указанного типа (№ ответа занести в таблицу):

  1. Три разных основания степеней
  2. Два разных основания – разные показатели степени
  3. Основания степеней – степени одного числа
  4. Одинаковые основания – разные показатели степеней
  5. Одинаковые основания степеней – одинаковые показатели степеней
  6. Произведение степеней
  7. Два разных основания степеней – одинаковые показатели
  8. Простейшие показательные уравнения

1. (произведение степеней)

2. (одинаковые основания – разные показатели степеней)

На данном уроке мы рассмотрим решение более сложных показательных уравнений, вспомним основные теоретические положения касательно показательной функции.

1. Определение и свойства показательной функции, методика решения простейших показательных уравнений

Напомним определение и основные свойства показательной функции. Именно на свойствах базируется решение всех показательных уравнений и неравенств.

Показательная функция - это функция вида , где основание степени и Здесь х - независимая переменная, аргумент; у - зависимая переменная, функция.

Рис. 1. График показательной функции

На графике показаны возрастающая и убывающая экспоненты, иллюстрирующие показательную функцию при основании большем единицы и меньшем единицы, но большим нуля соответственно.

Обе кривые проходят через точку (0;1)

Свойства показательной функции :

Область определения: ;

Область значений: ;

Функция монотонна, при возрастает, при убывает.

Монотонная функция принимает каждое свое значение при единственном значении аргумента.

При когда аргумент возрастает от минус до плюс бесконечности, функция возрастает от нуля не включительно до плюс бесконечности. При наоборот, когда аргумент возрастает от минус до плюс бесконечности, функция убывает от бесконечности до нуля не включительно.

2. Решение типовых показательных уравнений

Напомним, как решать простейшие показательные уравнения. Их решение основано на монотонности показательной функции. К таким уравнениям сводятся практически все сложные показательные уравнения.

Равенство показателей степени при равных основаниях обусловлено свойством показательной функции, а именно ее монотонностью.

Методика решения:

Уравнять основания степеней;

Приравнять показатели степеней.

Перейдем к рассмотрению более сложных показательных уравнений, наша цель - свести каждое из них к простейшему.

Освободимся от корня в левой части и приведем степени к одинаковому основанию:

Для того чтобы свести сложное показательное уравнение к простейшим, часто используется замена переменных.

Воспользуемся свойством степени:

Вводим замену. Пусть , тогда

Умножим полученное уравнение на два и перенесем все слагаемые в левую часть:

Первый корень не удовлетворяет промежутку значений у, отбрасываем его. Получаем:

Приведем степени к одинаковому показателю:

Вводим замену:

Пусть , тогда . При такой замене очевидно, что у принимает строго положительные значения. Получаем:

Решать подобные квадратные уравнения мы умеем, выпишем ответ:

Чтобы удостовериться в правильности нахождения корней, можно выполнить проверку по теореме Виета, т. е. найти сумму корней и их произведение и сверить с соответствующими коэффициентами уравнения.

Получаем:

3. Методика решения однородных показательных уравнений второй степени

Изучим следующий важный тип показательных уравнений:

Уравнения такого типа называют однородными второй степени относительно функций f и g. В левой его части стоит квадратный трехчлен относительно f с параметром g или квадратный трехчлен относительно g с параметром f.

Методика решения:

Данное уравнение можно решать как квадратное, но легче поступить по-другому. Следует рассмотреть два случая:

В первом случае получаем

Во втором случае имеем право разделить на старшую степень и получаем:

Следует ввести замену переменных , получим квадратное уравнение относительно у:

Обратим внимание, что функции f и g могут быть любыми, но нас интересует тот случай, когда это показательные функции.

4. Примеры решения однородных уравнений

Перенесем все слагаемые в левую часть уравнения:

Поскольку показательные функции приобретают строго положительные значения, имеем право сразу делить уравнение на , не рассматривая случай, когда :

Получаем:

Вводим замену: (согласно свойствам показательной функции)

Получили квадратное уравнение:

Определяем корни по теореме Виета:

Первый корень не удовлетворяет промежутку значений у, отбрасываем его, получаем:

Воспользуемся свойствами степени и приведем все степени к простым основаниям:

Несложно заметить функции f и g:

Поскольку показательные функции приобретают строго положительные значения, имеем право сразу делить уравнение на , не рассматривая случай, когда .

Показательные уравнения. Как известно — в состав ЕГЭ входят простые уравнения. Некоторые мы уже рассмотрели – это логарифмические, тригонометрические, рациональные. Здесь представлены показательные уравнения.

В недавней статье мы поработали с показательными выражениями, будет полезно. Сами уравнения решаются просто и быстро. Требуется лишь знать свойства показателей степени и... Об этом далее.

Перечислим свойства показателей степени:

Нулевая степень любого числа равна единице.

Следствие из данного свойства:

Ещё немного теории.

Показательным уравнением называется уравнение содержащее переменную в показателе, то есть это уравнение вида:

f (x ) выражение, которое содержит переменную

Методы решения показательных уравнений

1. В результате преобразований уравнение можно привести к виду:

Тогда применяем свойство:

2. При получении уравнения вида a f ( x ) = b используется определение логарифма, получим:

3. В результате преобразований можно получить уравнение вида:

Применяется логарифмирование:

Выражаем и находим х.

В задачах вариантов ЕГЭ достаточно будет использовать первый способ.

То есть, необходимо представить левую и правую части в виде степеней с одинаковым основанием, а далее приравниваем показатели и решаем обычное линейное уравнение.

Рассмотрим уравнения:

Найдите корень уравнения 4 1–2х = 64.

Необходимо сделать так, чтобы в левой и правой частях были показательные выражения с одним основанием. 64 мы можем представить как 4 в степени 3. Получим:

4 1–2х = 4 3

1 – 2х = 3

– 2х = 2

х = – 1

Проверка:

4 1–2 (–1) = 64

4 1 + 2 = 64

4 3 = 64

64 = 64

Ответ: –1

Найдите корень уравнения 3 х–18 = 1/9.

Известно, что

Значит 3 х-18 = 3 -2

Основания равны, можем приравнять показатели:

х – 18 = – 2

х = 16

Проверка:

3 16–18 = 1/9

3 –2 = 1/9

1/9 = 1/9

Ответ: 16

Найдите корень уравнения:

Представим дробь 1/64 как одну четвёртую в третьей степени:

2х – 19 = 3

2х = 22

х = 11

Проверка:

Ответ: 11

Найдите корень уравнения:

Представим 1/3 как 3 –1 , а 9 как 3 в квадрате, получим:

(3 –1) 8–2х = 3 2

3 –1∙(8–2х) = 3 2

3 –8+2х = 3 2

Теперь можем приравнять показатели:

– 8+2х = 2

2х = 10

х = 5

Проверка:

Ответ: 5

26654. Найдите корень уравнения:

Решение:


Ответ: 8,75

Действительно, в какую бы степень мы не возвели положительное число a, мы никак не можем получить число отрицательное.

Любое показательное уравнение после соответствующих преобразований сводится к реше­нию одного или нескольких простейших. В данной рубрике мы ещё рассмотрим решение некоторых уравнений, не пропустите! На этом всё. Успеха вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.