Меню
Бесплатно
Главная  /  Стиль жизни  /  Генеральная и выборочная. Генеральная и выборочная совокупности. Метод выборки

Генеральная и выборочная. Генеральная и выборочная совокупности. Метод выборки

План:

1. Задачи математической статистики.

2. Виды выборок.

3. Способы отбора.

4. Статистическое распределение выборки.

5. Эмпирическая функция распределения.

6. Полигон и гистограмма.

7. Числовые характеристики вариационного ряда.

8. Статистические оценки параметров распределения.

9. Интервальные оценки параметров распределения.

1. Задачи и методы математической статистики

Математическая статистика - это раздел математики, посвященный методам сбора, анализа и обработки результатов статистических данных наблюдений для научных и практических целей.

Пусть требуется изучить совокупность однородных объектов относительно некоторого качественного или количественного признака, характеризующего эти объекты. Например, если имеется партия деталей, то качественным признаком может служить стандартность детали, а количественным- контролируемый размер детали.

Иногда проводят сплошное исследование, т.е. обследуют каждый объект относительно нужного признака. На практике сплошное обследование применяется редко. Например, если совокупность содержит очень большое число объектов, то провести сплошное обследование физически невозможно. Если обследование объекта связано с его уничтожением или требует больших материальных затрат, то проводить сплошное обследование не имеет смысла. В таких случаях случайно отбирают из всей совокупности ограниченное число объектов (выборочную совокупность) и подвергают их изучению.

Основная задача математической статистики заключается в исследовании всей совокупности по выборочным данным в зависимости от поставленной цели, т.е. изучение вероятностных свойств совокупности: закона распределения, числовых характеристик и т.д. для принятия управленческих решений в условиях неопределенности.

2. Виды выборок

Генеральная совокупность – это совокупность объектов, из которой производится выборка.

Выборочная совокупность (выборка) – это совокупность случайно отобранных объектов.

Объем совокупности – это число объектов этой совокупности. Объем генеральной совокупности обозначается N , выборочной – n .

Пример:

Если из 1000 деталей отобрано для обследования 100 деталей, то объем генеральной совокупности N = 1000, а объем выборки n = 100.

Присоставлении выборки можно поступить двумя способами: после того, как объект отобран и над ним произведено наблюдение, он может быть возвращен либо не возвращен в генеральную совокупность. Т.о. выборки делятся на повторные и бесповторные.

Повторной называют выборку , при которой отобранный объект (перед отбором следующего) возвращается в генеральную совокупность.

Бесповторной называют выборку , при которой отобранный объект в генеральную совокупность не возвращается.

На практике обычно пользуются бесповторным случайным отбором.

Для того, чтобы по данным выборки можно было достаточно уверенно судить об интересующем признаке генеральной совокупности, необходимо, чтобы объекты выборки правильно его представляли. Выборка должна правильно представлять пропорции генеральной совокупности. Выборка должна быть репрезентативной (представительной).

В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, если ее осуществлять случайно.

Если объем генеральной совокупности достаточно велик, а выборка составляет лишь незначительную часть этой совокупности, то различие между повторной и бесповторной выборками стирается; в предельном случае, когда рассматривается бесконечная генеральная совокупность, а выборка имеет конечный объем, это различие исчезает.

Пример:

В американском журнале «Литературное обозрение» с помощью статистическихметодов было проведено исследование прогнозов относительно исхода предстоящих выборов президента США в 1936 году. Претендентами на этот пост были Ф.Д. Рузвельт и А. М. Ландон. В качестве источника для генеральной совокупности исследуемых американцев были взяты справочники телефонных абонентов. Из них случайным образом были выбраны 4 миллиона адресов., по которым редакция журнала разослала открытки с просьбой высказать свое отношение к кандидатам на пост президента. Обработав результаты опроса, журнал опубликовал социологический прогноз о том, что на предстоящих выборах с большим перевесом победит Ландон. И … ошибся: победу одержал Рузвельт.
Этот пример можно рассматривать, как пример нерепрезентативной выборки. Дело в том, что в США в первой половине двадцатого века телефоны имела лишь зажиточная часть населения, которые поддерживали взгляды Ландона.

3. Способы отбора

На практике применяются различные способы отбора, которые можно разделить на 2 вида:

1. Отбор не требует расчленения генеральной совокупности на части (а) простой случайный бесповторный ; б) простой случайный повторный ).

2. Отбор, при котором генеральная совокупность разбивается на части. (а) типичный отбор ; б) механический отбор ; в) серийный отбор ).

Простым случайным называют такой отбор , при котором объекты извлекаются по одному из всей генеральной совокупности (случайно).

Типичным называют отбор , при котором объекты отбираются не из всей генеральной совокупности, а из каждой ее «типичной» части. Например, если деталь изготавливают на нескольких станках, то отбор производят не из всей совокупности деталей, произведенных всеми станками, а из продукции каждого станка в отдельности. Таким отбором пользуются тогда, когда обследуемый признак заметно колеблется в различных «типичных» частях генеральной совокупности.

Механическим называют отбор , при котором генеральную совокупность «механически» делят на столько групп, сколько объектов должно войти в выборку, а из каждой группы отбирают один объект. Например, если нужно отобрать 20 % изготовленных станком деталей, то отбирают каждую 5-ую деталь; если требуется отобрать 5 % деталей- каждую 20-ую и т.д. Иногда такой отбор может не обеспечивать репрезентативность выборки (если отбирают каждый 20-ый обтачиваемый валик, причем сразу же после отбора производится замена резца, то отобранными окажутся все валики, обточенные затупленными резцами).

Серийным называют отбор , при котором объекты отбирают из генеральной совокупности не по одному, а «сериями», которые подвергают сплошному обследованию. Например, если изделия изготавливаются большой группой станков-автоматов, то подвергают сплошному обследованию продукцию только нескольких станков.

На практике часто применяют комбинированный отбор, при котором сочетаются указанные выше способы.

4. Статистическое распределение выборки

Пусть из генеральной совокупности извлечена выборка, причем значение x 1 –наблюдалось раз, x 2 -n 2 раз,… x k - n k раз. n = n 1 +n 2 +...+n k – объем выборки. Наблюдаемые значения называются вариантами , а последовательность вариант, записанных в возрастающем порядке- вариационным рядом . Числа наблюдений называются частотами (абсолютными частотами) , а их отношения к объему выборки - относительными частотами или статистическими вероятностями.

Если количество вариант велико или выборка производится из непрерывной генеральной совокупности, то вариационный ряд составляется не по отдельным точечным значениям, а по интервалам значений генеральной совокупности. Такой вариационный ряд называется интервальным. Длины интервалов при этом должны быть равны.

Статистическим распределением выборки называется перечень вариант и соответствующих им частот или относительных частот.

Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (суммы частот, попавших в этот интервал значений)

Точечный вариационный ряд частот может быть представлен таблицей:

x i
x 1
x 2

x k
n i
n 1
n 2

n k

Аналогично можно представить точечный вариационный ряд относительных частот.

Причем:

Пример:

Число букв в некотором тексте Х оказалось равным 1000. Первой встретиласьбуква «я», второй- буква «и», третьей- буква «а», четвертой- «ю». Затем шли буквы«о», «е», «у», «э», «ы».

Выпишем места, которые они занимают в алфавите, соответственно имеем: 33, 10, 1, 32, 16, 6, 21, 31, 29.

После упорядочения этих чисел по возрастанию получаем вариационный ряд: 1, 6, 10, 16, 21, 29, 31, 32, 33.

Частоты появления букв в тексте: «а» - 75, «е» -87, «и»- 75, «о»- 110, «у»- 25, «ы»- 8, «э»- 3, «ю»- 7, «я»- 22.

Составим точечный вариационный ряд частот:

Пример:

Задано распределение частот выборки объема n = 20.

Составьте точечный вариационный ряд относительных частот.

x i

2

6

12

n i

3

10

7

Решение:

Найдем относительные частоты:


x i

2

6

12

w i

0,15

0,5

0,35

При построении интервального распределения существуют правилавыбора числа интервалов или величины каждого интервала. Критерием здесь служит оптимальное соотношение: при увеличении числа интервалов улучшается репрезентативность, но увеличивается объем данных и время на их обработку. Разность x max - x min между наибольшим и наименьшим значениями вариант называют размахом выборки.

Для подсчета числа интервалов k обычно применяют эмпирическую формулу Стреджесса (подразумевая округление до ближайшего удобного целого): k = 1 + 3.322 lg n .

Соответственно, величину каждого интервала h можно вычислить по формуле :

5. Эмпирическая функция распределения

Рассмотрим некоторую выборку из генеральной совокупности. Пусть известно статистическое распределение частот количественного признака Х. Введем обозначения: n x – число наблюдений, при которых наблюдалось значение признака, меньшее х; n общее число наблюдений (объем выборки). Относительная частота события Х<х равна n x /n . Если х изменяется, то изменяется и относительная частота, т.е. относительная частота n x /n - есть функция от х. Т.к. она находится эмпирическим путем, то она называется эмпирической.

Эмпирической функцией распределения (функцией распределения выборки) называют функцию , определяющую для каждого х относительную частоту события Х<х.


где число вариант, меньших х,

n - объем выборки.

В отличие от эмпирической функции распределения выборки, функцию распределения F (x ) генеральной совокупности называют теоретической функцией распределения .

Различие между эмпирической и теоретической функциями распределения состоит в том, что теоретическая функция F (x ) определяет вероятность события ХF*(x) стремится по вероятности к вероятности F (x ) этого события. Т.е.при большом n F*(x) и F (x ) мало отличаются друг от друга.

Т.о. целесообразно использовать эмпирическую функцию распределения выборки для приближенного представления теоретической (интегральной) функции распределения генеральной совокупности.

F*(x) обладает всеми свойствами F (x ).

1. ЗначенияF*(x) принадлежат интервалу .

2. F*(x) - неубывающая функция.

3. Если – наименьшая варианта, тоF*(x) = 0, при х< x 1 ; если x k – наибольшая варианта, то F*(x) = 1, при х > x k .

Т.е. F*(x) служит для оценки F (x ).

Если выборка задана вариационным рядом, то эмпирическая функция имеет вид:

График эмпирической функции называется кумулятой.

Пример:

Постройте эмпирическую функцию по данному распределению выборки.


Решение:

Объем выборки n = 12 + 18 +30 = 60. Наименьшая варианта 2, т.е. при х < 2. Событие X <6, (x 1 = 2) наблюдалось 12 раз, т.е. F*(x)=12/60=0,2 при 2 < x < 6. Событие Х<10, (x 1 =2, x 2 = 6) наблюдалось 12 + 18 = 30 раз, т.е.F*(x)=30/60=0,5 при 6 < x < 10. Т.к. х=10 наибольшая варианта, тоF*(x) = 1 при х>10. Искомая эмпирическая функция имеет вид:

Кумулята:


Кумулята дает возможность понимать графически представленную информацию, например, ответить на вопросы: «Определите число наблюдений, при которых значение признака было меньше 6 или не меньше 6. F*(6) =0,2 » Тогда число наблюдений, при которых значение наблюдаемого признака было меньше 6 равно 0,2* n = 0,2*60 = 12. Число наблюдений, при которых значение наблюдаемого признака было не меньше 6 равно (1-0,2)* n = 0,8*60 = 48.

Если задан интервальный вариационный ряд, то для составления эмпирической функции распределения находят середины интервалов и по ним получают эмпирическую функцию распределения аналогично точечному вариационному ряду.

6. Полигон и гистограмма

Для наглядности строят различные графики статистического распределения: полином и гистограммы

Полигон частот- это ломаная, отрезки которой соединяют точки ( x 1 ;n 1 ), ( x 2 ;n 2 ),…, ( x k ; n k ), где – варианты, – соответствующие им частоты.

Полигон относительных частот- это ломаная, отрезки которой соединяют точки ( x 1 ;w 1 ), (x 2 ;w 2 ),…, ( x k ;w k ), гдеx i –варианты, w i – соответствующие им относительные частоты.

Пример:

Постройте полином относительных частот по данному распределению выборки:

Решение:

В случае непрерывного признака целесообразно строить гистограмму, для чего интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько частичных интервалов длиной h и находят для кажд ого частичного интервала n i – сумму частот вариант, попавших в i -ый интервал. (Например, при измерении роста человека или веса, мы имеем дело с непрерывным признаком).

Гистограмма частот- это ступенчатая фигура, состоящая из прямоугольников, основаниями которых служат частичные интервалы длиною h , а высоты равны отношению (плотность частот).

Площадь i -го частичного прямоугольника равна- сумме частот вариант i - го интервала, т.е. площадь гистограммы частот равна сумме всех частот, т.е. объему выборки.

Пример:

Даны результаты изменения напряжения (в вольтах) в электросети. Составьте вариационный ряд, постройте полигон и гистограмму частот, если значения напряжения следующие: 227, 215, 230, 232, 223, 220, 228, 222, 221, 226, 226, 215, 218, 220, 216, 220, 225, 212, 217, 220.

Решение:

Составим вариационный ряд. Имеем n = 20, x min =212, x max =232 .

Применим формулу Стреджесса для подсчета числа интервалов.

Интервальный вариационный ряд частот имеет вид:


Плотность частот

212-21 6

0,75

21 6-22 0

0,75

220-224

1,75

224-228

228-232

0,75

Построим гистограмму частот:

Построим полигон частот, найдя предварительно середины интервалов:


Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которыхслужат частичные интервалы длиною h , а высоты равны отношению w i /h (плотность относительной частоты).

Площадь i -го частичного прямоугольника равна- относительной частоте вариант, попавших в i - ый интервал. Т.е. площадь гистограммы относительных частот равна сумме всех относительных частот, т.е. единице.

7. Числовые характеристики вариационного ряда

Рассмотрим основные характеристики генеральной и выборочной совокупностей.

Генеральным средним называется среднее арифметическое значений признака генеральной совокупности.

Для различных значений x 1 , x 2 , x 3 , …, x n . признака генеральной совокупности объема N имеем:

Если значения признака имеют соответствующие частоты N 1 +N 2 +…+N k =N , то


Выборочным средним называется среднее арифметическое значений признака выборочной совокупности.

Если значения признака имеют соответствующие частоты n 1 +n 2 +…+n k = n , то


Пример:

Вычислите выборочное среднее для выборки: x 1 = 51,12; x 2 = 51,07;x 3 = 52,95; x 4 =52,93;x 5 = 51,1;x 6 = 52,98; x 7 = 52,29; x 8 = 51,23; x 9 = 51,07; x 10 = 51,04.

Решение:

Генеральной дисперсией называется среднее арифметическое квадратов отклонений значений признака Х генеральной совокупности от генерального среднего.

Для различных значений x 1 , x 2 , x 3 , …, x N признака генеральной совокупности объема N имеем:

Если значения признака имеют соответствующие частоты N 1 +N 2 +…+N k =N , то

Генеральным среднеквадратическим отклонением (стандартом) называют квадратный корень из генеральной дисперсии

Выборочной дисперсией называется среднее арифметическое квадратов отклонений наблюдаемых значений признака от среднего значения.

Для различных значений x 1 , x 2 , x 3 , …, x n признака выборочной совокупности объема n имеем:


Если значения признака имеют соответствующие частоты n 1 +n 2 +…+n k = n , то


Выборочным среднеквадратическим отклонением (стандартом) называется квадратный корень из выборочной дисперсии.


Пример:

Выборочная совокупность задана таблицей распределения. Найдите выборочную дисперсию.


Решение:

Теорема: Дисперсия равна разности среднего квадратов значений признака и квадрата общего среднего.

Пример:

Найдите дисперсию по данному распределению.



Решение:

8. Статистические оценки параметров распределения

Пусть генеральная совокупность исследуется по некоторой выборке. При этом можно получить лишь приближенное значение неизвестного параметра Q , который служит его оценкой. Очевидно, что оценки могут изменяться от одной выборки к другой.

Статистической оценкой Q * неизвестного параметра теоретического распределения называется функция f , зависящая от наблюдаемых значений выборки. Задачей статистического оценивания неизвестных параметров по выборке заключается в построении такой функции от имеющихся данных статистических наблюдений, которая давала бы наиболее точные приближенные значения реальных, не известных исследователю, значений этих параметров.

Статистические оценки делятся на точечные и интервальные, в зависимости от способа их предоставления (числом или интервалом).

Точечной называют статистическую оценку параметра Q теоретического распределения определяемую одним значением параметра Q *=f (x 1 , x 2 , ..., x n), где x 1 , x 2 , ..., x n - результаты эмпирических наблюдений над количественным признаком Х некоторой выборки.

Такие оценки параметров, полученные по разным выборкам, чаще всего отличаются друг от друга. Абсолютная разность /Q *-Q / называют ошибкой выборки (оценивания).

Для того, чтобы статистические оценки давали достоверные результаты об оцениваемых параметрах, необходимо, чтобы они были несмещенными, эффективными и состоятельными.

Точечная оценка , математическое ожидание которой равно (не равно) оцениваемому параметру, называется несмещенной (смещенной) . М(Q *)=Q .

Разность М(Q *)-Q называют смещением или систематической ошибкой . Для несмещенных оценок систематическая ошибка равна 0.

Эффективной оценку Q *, которая при заданном объеме выборки n имеет наименьшую возможную дисперсию: D min (n = const ). Эффективная оценка имеет наименьший разброс по сравнению с другими несмещенными и состоятельными оценками.

Состоятельной называют такую статистическую оценку Q *, которая при n стремится по вероятности к оцениваемому параметру Q , т.е. при увеличении объема выборки n оценка стремится по вероятности к истинному значению параметра Q .

Требование состоятельности согласуется с законом больших числе: чем больше исходной информации об исследуемом объекте, тем точнее результат. Если объем выборки мал, то точечная оценка параметра может привести к серьезным ошибкам.

Любую выборку (объема n ) можно рассматривать как упорядоченный набор x 1 , x 2 , ..., x n независимых одинаково распределенных случайных величин.

Выборочные средние для различных выборок объема n из одной и той же генеральной совокупности будут различны. Т. е. выборочное среднее можно рассматривать как случайную величину, а значит, можно говорить о распределении выборочного среднего и его числовых характеристиках.

Выборочное среднее удовлетворяет всем накладываемым к статистическим оценкам требованиям, т.е. дает несмещенную, эффективную и состоятельную оценку генерального среднего.

Можно доказать, что . Таким образом, выборочная дисперсия является смещенной оценкой генеральной дисперсии, давая ее заниженное значение. Т. е. при небольшом объеме выборки она будет давать систематическую ошибку. Для несмещенной, состоятельной оценки достаточно взять величину , которую называют исправленной дисперсией. Т. е.

На практике для оценки генеральной дисперсии применяют исправленную дисперсию при n < 30. В остальных случаях (n >30) отклонение от малозаметно. Поэтому при больших значениях n ошибкой смещения можно пренебречь.

Можно так же доказать,что относительная частота n i / n является несмещенной и состоятельной оценкой вероятности P (X =x i ). Эмпирическая функция распределения F *(x ) является несмещенной и состоятельной оценкой теоретической функции распределения F (x )= P (X < x ).

Пример:

Найдите несмещенные оценки математического ожиданияи дисперсии по таблице выборки.

x i
n i

Решение:

Объем выборки n =20.

Несмещенной оценкой математического ожидания является выборочное среднее.


Для вычисления несмещенной оценки дисперсии сначала найдем выборочную дисперсию:

Теперь найдем несмещенную оценку:

9. Интервальные оценки параметров распределения

Интервальной называется статистическая оценка, определяемая двумя числовыми значениями- концами исследуемого интервала.

Число > 0, при котором | Q - Q *|< , характеризует точность интервальной оценки.

Доверительным называется интервал , который с заданной вероятностью покрывает неизвестное значение параметра Q . Дополнение доверительного интервала до множества всех возможных значений параметра Q называется критической областью . Если критическая область расположена только с одной стороны от доверительного интервала, то доверительный интервал называется односторонним: левосторонним , если критическая область существует только слева, и правосторонним- если только справа. В противном случае, доверительный интервал называется двусторонним .

Надежностью, или доверительной вероятностью, оценки Q (с помощью Q *) называют вероятность, с которой выполняется следующее неравенство: | Q - Q *|< .

Чаще всего доверительную вероятность задают заранее (0,95; 0,99; 0,999) и на нее накладывают требование быть близкой к единице.

Вероятность называют вероятностью ошибки, или уровнем значимости.

Пусть | Q - Q *|< , тогда . Это означает, что с вероятностью можно утверждать, что истинное значение параметра Q принадлежит интервалу . Чем меньше величина отклонения , тем точнее оценка.

Границы (концы) доверительного интервала называют доверительными границами, или критическими границами.

Значения границ доверительного интервала зависят от закона распределения параметра Q *.

Величину отклонения равную половине ширины доверительного интервала, называют точностью оценки.

Методы построения доверительных интервалов впервые были разработаны американским статистом Ю. Нейманом. Точность оценки , доверительная вероятность и объем выборки n связаны между собой. Поэтому, зная конкретные значения двух величин, всегда можно вычислить третью.

Нахождение доверительного интервала для оценки математического ожидания нормального распределения, если известно среднеквадратическое отклонение.

Пусть произведена выборка из генеральной совокупности, подчиненной закону нормального распределения. Пусть известно генеральное среднеквадратическое отклонение , но неизвестно математическое ожидание теоретического распределения a ( ).

Справедлива следующая формула:

Т.е. по заданному значению отклонения можно найти, с какой вероятностью неизвестное генеральное среднее принадлежит интервалу . И наоборот. Из формулы видно, что при возрастании объема выборки и фиксированной величине доверительной вероятности величина - уменьшается, т.е. точность оценки увеличивается. С увеличением надежности (доверительной вероятности), величина -увеличивается, т.е. точность оценки уменьшается.

Пример:

В результате испытаний были получены следующие значения -25, 34, -20, 10, 21. Известно, что они подчиняются закону нормального распределения с среднеквадратическим отклонением 2. Найдите оценку а* для математического ожидания а. Постройте для него 90%-ый доверительный интервал.

Решение:

Найдем несмещенную оценку

Тогда


Доверительный интервал для а имеет вид: 4 – 1,47< a < 4+ 1,47 или 2,53 < a < 5, 47

Нахождение доверительного интервала для оценки математического ожидания нормального распределения, если неизвестно среднеквадратическое отклонение.

Пусть известно, что генеральная совокупность подчинена закону нормального распределения, где неизвестны а и . Точность доверительного интервала, покрывающего с надежностью истинное значение параметра а, в данном случае вычисляется по формуле:

, где n - объем выборки, , - коэффициент Стьюдента (его следует находить по заданным значениям n и из таблицы «Критические точки распределения Стьюдента»).

Пример:

В результате испытаний были получены следующие значения -35, -32, -26, -35, -30, -17. Известно, что они подчиняются закону нормального распределения. Найдите доверительный интервал для математического ожидания а генеральной совокупности с доверительной вероятностью 0,9.

Решение:

Найдем несмещенную оценку .

Найдем .

Тогда

Доверительный интервал примет вида (-29,2 - 5,62; -29,2 + 5,62) или (-34,82; -23,58).

Нахождение доверительного интерла для дисперсии и среднеквадратического отклонения нормального распределения

Пусть из некоторой генеральной совокупности значений, распределенной по нормальному закону, взята случайная выборка объема n < 30, для которой вычислены выборочные дисперсии: смещенная и исправленная s 2 . Тогда для нахождения интервальных оценок с заданной надежностью для генеральной дисперсии D генерального среднеквадратического отклонения используются следующие формулы.


или ,

Значения - находят с помощью таблицы значений критических точек распределения Пирсона.

Доверительный интервал для дисперсии находится из этих неравенств путем возведения всех частей неравенства в квадрат.

Пример:

Было проверено качество 15 болтов. Предполагая, что ошибка при их изготовлении подчинена нормальному закону распределения, причем выборочное среднеквадратическое отклонение равно 5 мм, определить с надежностью доверительный интервал для неизвестного параметра

Границы интервала представим в виде двойного неравенства:

Концы двустороннего доверительного интервала для дисперсии можно определить и без выполнения арифметических действий по заданному уровню доверия и объему выборки с помощью соответствующей таблицы (Границы доверительных интервалов для дисперсии в зависимости от числа степеней свободы и надежности). Для этого полученные из таблицы концы интервала умножают на исправленную дисперсию s 2 .

Пример:

Решим предыдущую задачу другим способом.

Решение:

Найдем исправленную дисперсию:

По таблице «Границы доверительных интервалов для дисперсии в зависимости от числа степеней свободы и надежности» найдем границы доверительного интервала для дисперсии при k =14 и : нижняя граница 0,513 и верхняя 2,354.

Умножим полученные границы на s 2 и извлечем корень (т.к. нам нужен доверительный интервал не для дисперсии, а для среднеквадратического отклонения).

Как видно из примеров, величина доверительного интервала зависит от способа его построения и дает близкие между собой, но неодинаковые результаты.

При выборках достаточно большого объема (n >30) границы доверительного интервала для генерального среднеквадратического отклонения можно определить по формуле: - некоторое число, которое табулировано и приводится в соответствующей справочной таблице.

Если 1- q <1, то формула имеет вид:

Пример:

Решим предыдущую задачу третьим способом.

Решение:

Ранее было найдено s = 5,17. q (0,95; 15) = 0,46 – находим по таблице.

Тогда:

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Генеральная совокупность - вся изучаемая выборочным методом статистическая совокупность объектов и/или явлений общественной жизни, имеющих общие качественные признаки или количественные переменные.

Суммарная численность объектов наблюдения (люди, домохозяйства, предприятия, населенные пункты и т.д.), обладающих определенным набором признаков (пол, возраст, доход, численность, оборот и т.д.), ограниченная в пространстве и времени. Примеры генеральных совокупностей:
- Все жители Москвы (10,6 млн. человек по данным переписи 2002 года)
- Мужчины-Москвичи (4,9 млн. человек по данным переписи 2002 года)
- Юридические лица России (2,2 млн. на начало 2005 года)
- Розничные торговые точки, осуществляющие продажу продуктов питания (20 тысяч на начало 2008 года) и т.д.

Корректное определение Г.С. и ее характеристик чрезвычайно важно для выбора дизайна исследования - стратегии построения репрезентативной выборки (см. ). Важнейшими характеристиками Г.С. являются ее объем и доступность элементов для определения.

С точки зрения объема, принято выделять конечные и бесконечные Г.С. Это деление является чисто техническим, оно обусловлено особенностями процедур оценивания объема и ошибок репрезентативной вероятностной (случайной) выборки. Конечными считаются Г.С., численность которых сопоставима с объемом выборки. Если объем выборки превышает несколько процентов от численности Г.С., ошибку выборки необходимо оценивать с поправкой на объем Г.С.

Бесконечными называются Г.С., объем которых, по сравнению с объемом репрезентативной случайной выборки, несоизмеримо велик. Строго говоря, все Г.С. в социальных науках конечны (даже если их численность составляет несколько миллиардов), однако на практике Г.С. можно считать бесконечной, если объем выборки, обеспечивающий приемлемый уровень ошибки, не превышает 1-2 % от ее численности. Иногда понятие бесконечности связывают непосредственно с объемом Г.С., например, более ста тысяч объектов.

Г.С., принадлежность к которым очевидна или легко устанавливается, называются конкретными. Для конкретных Г.С. несложно определить объем и получить относительно полный список их элементов - основу выборки (см. Выборки основа ). Например, список совершеннолетних жителей города можно получить в адресном столе, а списки студентов крупного города - в университетах. Если конкретная Г.С. очень велика (например, население страны), списки могут быть получены для всех ее структурных частей. Построение репрезентативной выборки случайной (см. ) для конкретных Г.С. технически всегда возможно; проблемы могут возникнуть в связи с недостатком времени, квалифицированного персонала или материальных ресурсов.

Г.С., принадлежность к которой можно установить только в результате целенаправленных процедур или специальных исследований, называются гипотетическими. К таким Г.С. относятся, например, аудитории СМК (нельзя узнать, видел ли человек конкретный рекламный ролик, если не спросить его об этом), любители определенных видов аквариумных рыбок, эксперты по узкой проблеме и т.п. Для определения объема некоторых гипотетических Г.С. также необходимы специальные исследования. Возможность построения репрезентативной выборки случайной (см. ) для гипотетичных Г.С. большого объема во многих случаях представляется проблематичной.

ГЕНЕРАЛЬНОЙ СОВОКУПНОСТИ ПАРАМЕТР - статистический термин, применяемый для обозначений любой количественной характеристики генеральной совокупности (см. ). Математическое ожидание (см. ), дисперсия (см. ), вероятность (см. ) положительного ответа, коэффициент корреляции между двумя случайными величинами (см. ) являются Г.С.П. Аналогичные характеристики выборки (см. ) называются статистиками выборочными (см. ).

Выборка (Выборочная совокупность) - множество случаев (испытуемых, объектов, событий, образцов), с помощью определённой процедуры выбранных из генеральной совокупности для участия в исследовании.
Часть объектов из генеральной совокупности, отобранных для изучения, с тем чтобы сделать заключение обо всей генеральной совокупности. Для того чтобы заключение, полученное путем изучения выборки, можно было распространить на всю генеральную совокупность, выборка должна обладать свойством репрезентативности.

Характеристики выборки:

Качественная характеристика выборки - кого именно мы выбираем и какие способы построения выборки мы для этого используем.

Количественная характеристика выборки - сколько случаев выбираем, другими словами объём выборки.

Объём выборки — число случаев, включённых в выборочную совокупность. Из статистических соображений рекомендуется, чтобы число случаев составляло не менее 30—35.

Весь массив особей определенной категории называется генеральной совокупностью. Объем генеральной совокупности определяется задачами исследования.

Если изучается какой-нибудь вид диких животных или растений, то генеральной совокупностью будут все особи этого вида. В данном случае объем генеральной совокупности будет очень большой и при расчетах он принимается за бесконечно большую величину.

Если изучается действие какого-нибудь агента на растения и животных определенной категории, то генеральной совокупностью будут все растения и животные той категории (вида, пола, возраста, хозяйственного назначения), к которой относились подопытные объекты. Это уже не очень большое количество особей, но еще недоступное для сплошного изучения.

Не всегда объем генеральной совокупности недоступен для сплошного исследования. Иногда изучаются небольшие совокупности, например, определяется средний удой или средний настриг шерсти у группы животных, закрепленных за определенным работником. В таких случаях генеральной совокупностью будет совсем небольшое количество особей, которые все исследуются. Небольшая генеральная совокупность встречается также при исследовании растений или животных, имеющихся в какой-нибудь коллекции, с целью характеристики определенной группы в данной коллекции.

Характеристики групповых свойств ( и т. д.), относящиеся ко всей генеральной совокупности, называются генеральными параметрами.

Выборка – группа объектов, отличающихся тремя особенностями:

1 это часть генеральной совокупности;

2 отобранная в случайном порядке, определенным образом;

3 исследуемая для характеристики всей генеральной совокупности.

Для того чтобы по выборке можно было получить достаточно точную характеристику всей генеральной совокупности, необходимо организовать правильный отбор объектов из генеральной совокупности.

Теорией и практикой разработано несколько систем отбора особей в выборку. В основу всех этих систем положено стремление обеспечить максимальную возможность выбора любого объекта из генеральной совокупности. Тенденциозность, предвзятость при отборе объектов для выборочного исследования препятствуют получению правильных общих выводов, делают результаты выборочного исследования непоказательными для всей генеральной совокупности, т. е. нерепрезентативными.

Для получения правильной, неискаженной характеристики всей генеральной совокупности необходимо стремиться обеспечить возможность отбора в выборку любого объекта из любой части генеральной совокупности. Это основное требование должно выполняться тем строже, чем более изменчив изучаемый признак. Вполне понятно, что при разнообразии, приближающемся к нулю, например в случае изучения цвета волос или перьев некоторых видов, любой способ отбора выборки даст репрезентативные результаты.

В различных исследованиях применяются следующие способы отбора объектов в выборку.

4 Случайный повторный отбор, при котором объекты изучения отбираются из генеральной совокупности без предварительного учета развития у них изучаемого признака, т. е. в случайном (для данного признака) порядке; после отбора каждый объект изучается и затем возвращается в свою генеральную совокупность, так что любой объект может попасть повторно в выборку. Такой способ отбора равносилен отбору из бесконечно большой генеральной совокупности, для которого разработаны основные показатели взаимоотношений между выборочными и генеральными величинами.

5 Случайный бесповторный отбор, при котором объекты, отобранные, как и при предыдущем способе, случайно, не возвращаются в генеральную совокупность и не могут повторно попасть в выборку. Это наиболее распространенный способ организации выборки; он равносилен отбору из большой, но ограниченной генеральной совокупности, что учитывается при определении генеральных показателей по выборочным.

6 Механический отбор, при котором производится отбор объектов из отдельных частей генеральной совокупности, причем эти части предварительно намечаются механически по квадратам опытного поля, по случайным группам животных, взятых из разных ареалов популяции и т. д. Обычно намечается столько таких частей, сколько предполагается взять объектов для изучения, поэтому число частей бывает равно численности выборки. Механический отбор иногда осуществляется выбором для изучения особей через определенное число, например при пропускании животных через раскол и отборе каждого десятого, сотого и т. д., или при взятии укоса через каждые 100 или 200 м, или отборе одного объекта через каждые встретившиеся 10, 100 и т. д. экземпляров при исследовании всей популяции.

8 Серийный (гнездовой) отбор, при котором генеральная совокупность разбивается на части – серии, некоторые из них исследуются целиком. Применяется этот способ с успехом в тех случаях, когда исследуемые объекты достаточно равномерно распределены в определенном объеме или на определенной территории. Например, при исследовании зараженности воздуха или воды микроорганизмами берут пробы, которые подвергаются сплошному исследованию. В некоторых случаях гнездовым способом могут быть обследованы также сельскохозяйственные объекты. При изучении выходов мяса и других продуктов переработки мясной породы скота в выборку можно взять всех животных этой породы, поступивших на два-три мясокомбината. При изучении величины яйца в колхозном птицеводстве можно в нескольких колхозах провести изучение этого признака у всего поголовья кур.

Характеристики групповых свойств (μ, s и т. д.), полученные для выборки, называются выборочными показателями.

Репрезентативность

Непосредственное изучение группы отобранных объектов дает, прежде всего, первичный материал и характеристику самой выборки.

Все выборочные данные и сводные показатели имеют значение в качестве первичных фактов, вскрытых исследованием и подлежащих тщательному рассмотрению, анализу и сопоставлению с результатами других работ. Но этим не ограничивается процесс извлечения информации, заложенный в первичных материалах исследования.

То обстоятельство, что объекты отбирались в выборку специальными приемами и в достаточном количестве, делает результаты изучения выборки показательными не только для самой выборки, но также и для всей генеральной совокупности, из которой взята эта выборка.

Выборка при определенных условиях становится более или менее точным отражением всей генеральной совокупности. Это свойство выборки называется репрезентативностью, что означает представительность с определенной точностью и надежностью.

Как и всякое свойство, репрезентативность выборочных данных может быть выражена в достаточной или в недостаточной степени. В первом случае в выборке получаются достоверные оценки генеральных параметров, во втором – недостоверные. Важно помнить, что получение недостоверных оценок не умаляет значения выборочных показателей для характеристики самой выборки. Получение же достоверных оценок расширяет область применения достижений, полученных при выборочном исследовании.

Статистическая совокупность


Статистическая совокупность состоит из материально существующих объектов (Работники, предприятия, страны, регионы), является объектом
статистического исследования . Статистическая совокупность
- множество единиц, обладающих массовостью, типичностью, качественной однородностью и наличием вариации.

Единица совокупности - каждая конкретная единица статистической совокупности.

Одна и таже статистическая совокупность может быть однородна по одному признаку и неоднородна по другому.

Качественная однородность - сходство всех единиц совокупности по какому-либо признаку и несходство по всем остальным.

В статистической совокупности отличия одной единицы совокупности от другой чаще имеют количественную природу. Количественные изменения значений признака разных единиц совокупности называются вариацией.

Вариация признака - количественное изменение признака (для количественного признака) при переходе от одной единицы совокупности к другой.

Признак - это свойство, характерная черта или иная особенность единиц, объектов и явлений, которая может быть наблюдаема или измерена. Признаки делятся на количественные и качественные. Многообразие и изменчивость величины признака у отдельных единиц совокупности называется вариацией .

Атрибутивные (качественные) признаки не поддаются числовому выражению (состав населения по полу). Количественные признаки имеют числовое выражение (состав населения по возрасту).

Показатель - это обобщающая количественно качестванная характеристика какого-либо свойства единиц или совокупности в цельм в конкретных условиях времени и места.

Система показателей - это совокупность показателей всесторонне отражающих изучаемое явление.

Например, изучается зарплата:
  • Признак - оплата труда
  • Статистическая совокупность - все работники
  • Единица совокупности - каждый работник
  • Качественная однородность - начисленная зарплата
  • Вариация признака - ряд цифр

Генеральная совокупность и выборка из нее

Основу статистического исследования составляет множество данных, полученных в результате измерения одного или нескольких признаков. Реально наблюдаемая совокупность объектов, статистически представленная рядом наблюдений случайной величины , является выборкой , а гипотетически существующая (домысливаемая) - генеральной совокупностью . Генеральная совокупность может быть конечной (число наблюдений N = const ) или бесконечной (N = ∞ ), а выборка из генеральной совокупности - это всегда результат ограниченного ряда наблюдений. Число наблюдений , образующих выборку, называется объемом выборки . Если объем выборки достаточно велик (n → ∞ ) выборка считается большой , в противном случае она называется выборкой ограниченного объема . Выборка считается малой , если при измерении одномерной случайной величины объем выборки не превышает 30 (n <= 30 ), а при измерении одновременно нескольких (k ) признаков в многомерном пространстве отношениеn к k не превышает 10 (n/k < 10) . Выборка образует вариационный ряд , если ее члены являются порядковыми статистиками , т. е. выборочные значения случайной величины Х упорядочены по возрастанию (ранжированы), значения же признака называютсявариантами .

Пример . Практически одна и та же случайно отобранная совокупность объектов - коммерческих банков одного административного округа Москвы, может рассматриваться как выборка из генеральной совокупности всех коммерческих банков этого округа, и как выборка из генеральной совокупности всех коммерческих банков Москвы, а также как выборка из коммерческих банков страны и т.д.

Основные способы организации выборки

Достоверность статистических выводов и содержательная интерпретация результатов зависит от репрезентативности выборки, т.е. полноты и адекватности представления свойств генеральной совокупности, по отношению к которой эту выборку можно считать представительной. Изучение статистических свойств совокупности можно организовать двумя способами: с помощью сплошного инесплошного наблюдения . Сплошное наблюдение предусматривает обследование всех единиц изучаемой совокупности , анесплошное (выборочное) наблюдение - только его части.

Существуют пять основных способов организации выборочного наблюдения:

1. простой случайный отбор , при котором объектов случайно извлекаются из генеральной совокупности объектов (например с помощью таблицы или датчика случайных чисел), причем каждая из возможных выборок имеют равную вероятность. Такие выборки называются собственно-случайными ;

2. простой отбор с помощью регулярной процедуры осуществляется с помощью механической составляющей (например, даты, дня недели, номера квартиры, буквы алфавита и др.) и полученные таким способом выборки называются механическими ;

3. стратифицированный отбор заключается в том, что генеральная совокупность объема подразделяется на подсовокупности или слои (страты) объема так что . Страты представляют собой однородные объекты с точки зрения статистических характеристик (например, население делится на страты по возрастным группам или социальной принадлежности; предприятия - по отраслям). В этом случае выборки называются стратифицированными (иначе, расслоенными, типическими, районированными );

4. методы серийного отбора используются для формирования серийных или гнездовых выборок . Они удобны в том случае, если необходимо обследовать сразу "блок" или серию объектов (например, партию товара, продукцию определенной серии или население при территориально-административном делении страны). Отбор серий можно осуществить собственно-случайным или механическим способом. При этом проводится сплошное обследование определенной партии товара, или целой территориальной единицы (жилого дома или квартала);

5. комбинированный (ступенчатый) отбор может сочетать в себе сразу несколько способов отбора (например, стратифицированный и случайный или случайный и механический); такая выборка называется комбинированной .

Виды отбора

По виду различаются индивидуальный, групповой и комбинированный отбор. При индивидуальном отборе в выборочную совокупность отбираются отдельные единицы генеральной совокупности, при групповом отборе - качественно однородные группы (серии) единиц, а комбинированный отбор предполагает сочетание первого и второго видов.

По методу отбора различают повторную и бесповторную выборку.

Бесповторным называется отбор, при котором попавшая в выборку единица не возвращается в исходную совокупность и в дальнейшем выборе не участвует; при этом численность единиц генеральной совокупности N сокращается в процессе отбора. Приповторном отборе попавшая в выборку единица после регистрации возвращается в генеральную совокупность и таким образом сохраняет равную возможность наряду с другими единицами быть использованной в дальнейшей процедуре отбора; при этом численность единиц генеральной совокупности N остается неизменной (метод в социально-экономических исследованиях применяется редко). Однако, при большом N (N → ∞) формулы для бесповторного отбора приближаются к аналогичным для повторного отбора и практически чаще используются последние (N = const ).

Основные характеристики параметров генеральной и выборочной совокупности

В основе статистических выводов проведенного исследования лежит распределение случайной величины , наблюдаемые же значения(х 1 , х 2 , … , х n) называются реализациями случайной величины Х (n - объем выборки). Распределение случайной величины в генеральной совокупности носит теоретический, идеальный характер, а ее выборочный аналог является эмпирическим распределением. Некоторые теоретические распределения заданы аналитически, т.е. их параметры определяют значение функции распределения в каждой точке пространства возможных значений случайной величины . Для выборки же функцию распределения определить трудно, а иногда невозможно, поэтому параметры оценивают по эмпирическим данным, а затем их подставляют в аналитическое выражение, описывающее теоретическое распределение. При этом предположение (или гипотеза ) о виде распределения может быть как статистически верным, так и ошибочным. Но в любом случае восстановленное по выборке эмпирическое распределение лишь грубо характеризует истинное. Важнейшими параметрами распределений являются математическое ожидание и дисперсия .

По своей природе распределения бывают непрерывными и дискретными . Наиболее известным непрерывным распределением является нормальное . Выборочными аналогами параметров идля него являются: среднее значение и эмпирическая дисперсия . Среди дискретных в социально-экономических исследованиях наиболее часто применяется альтернативное (дихотомическое) распределение. Параметр математического ожидания этого распределения выражает относительную величину (или долю ) единиц совокупности, которые обладают изучаемым признаком (она обозначена буквой ); доля совокупности, не обладающая этим признаком, обозначается буквой q (q = 1 - p) . Дисперсия же альтернативного распределения также имеет эмпирический аналог .

В зависимости от вида распределения и от способа отбора единиц совокупности по-разному вычисляются характеристики параметров распределения. Основные из них для теоретического и эмпирического распределений приведены в табл. 9.1.

Долей выборки k n называется отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности:

k n = n/N .

Выборочная доля w - это отношение единиц, обладающих изучаемым признаком x к объему выборки n :

w = n n /n .

Пример. В партии товара, содержащей 1000 ед., при 5% выборке доля выборки k n в абсолютной величине составляет 50 ед. (n = N*0,05); если же в этой выборке обнаружено 2 бракованных изделия, то выборочная доля брака w составит 0,04 (w = 2/50 = 0,04 или 4%).

Так как выборочная совокупность отлична от генеральной, то возникают ошибки выборки .

Таблица 9.1 Основные параметры генеральной и выборочной совокупностей

Лекция 6. Элементы математической статистики

Вопросы для контроля знаний и подведения итога прочитанной лекции

1. Дайте определение случайной величины.

2.Напишите формулы для математического ожидания и дисперсии дискретной и непрерывной случайных величин.

3. Дайте определение локальной интегральной предельная теорем Лапласа

4. Напишите формулы, задающие биномиальное распределение, гипергеометрическое распределение, распределение Пуассона, равномерное распределение и нормальное распределение.

Цель: Изучить основные понятия математической статистики

1. Генеральная совокупность и выборка

2. Статистическое распределение выборки. Полигон. Гистограмма.

3. Оценки параметров генеральной совокупности по ее выборке

4. Генеральная и выборочная средние. Методы их расчета.

5. Генеральная и выборочная дисперсии.

6. Вопросы для контроля знаний и подведения итога прочитанной лекции

Мы приступаем к изучению элементов математической статистики, в которой разрабатываются научно обоснованные методы сбора статистических данных и их обработки.

1. Генеральная совокупность и выборка. Пусть требуется изучить множество однородных объектов (это множество называется статистической совокупностью) относительно некоторого качественного или количественного признака, характеризующего эти объекты. Например, если имеется партия деталей, то качественным признаком может служить стандартность детали, а количественным - контролируемый размер детали.

Лучше всего произвести сплошное обследование, т.е. изучить каждый объект. Однако в большинстве случаев по разным причинам это сделать невозможно. Препятствовать сплошному обследованию может большое число объектов, недоступность их. Если, например, нужно знать среднюю глубину воронки при взрыве снаряда из опытной партии, то, производя сплошное обследование, мы уничтожим всю партию.

Если сплошное обследование невозможно, то из всей совокупности выбирают для изучения часть объектов.

Статистическая совокупность, из которой отбирают часть объектов, называется генеральной совокупностью. Множество объектов, случайно отобранных из генеральной совокупности, называют выборкой.

Число объектов генеральной совокупности и выборки называют соответственно объемом генеральной совокупности и объемом выборки.

Пример 10.1. Плоды одного дерева (200 шт.) обследуют на наличие специфического для данного сорта вкуса. Для этого отбирают 10 шт. Здесь 200 - объем генеральной совокупности, а 10 - объем выборки.

Если выборку отбирают по одному объекту, который обследуют и снова возвращают в генеральную совокупность, то выборка называется повторной. Если объекты выборки уже не возвращаются в генеральную совокупность, то выборка называется бесповторной.



На практике чаще используется бесповторная выборка. Если объем выборки составляет небольшую долю объема генеральной совокупности, то разница между повторной и бесповторной выборками незначительна.

Свойства объектов выборки должны правильно отражать свойства объектов генеральной совокупности, или, как говорят, выборка должна быть репрезентативной (представительной). Считается, что выборка репрезентативна, если все объекты генеральной совокупности имеют одинаковую вероятность попасть в выборку, т. е. выбор производится случайно. Например, для того чтобы оценить будущий урожай, можно сделать выборку из генеральной совокупности еще не созревших плодов и исследовать их характеристики (массу, качество и пр.). Если вся выборка будет сделана с одного дерева, то она не будет репрезентативной. Репрезентативная выборка должна состоять из случайно выбранных плодов со случайно выбранных деревьев.

2. Статистическое распределение выборки. Полигон. Гистограмма. Пусть из генеральной совокупности извлечена выборка, причем х 1 наблюдалось n 1 , раз, х 2 - п 2 раз, ..., х k - n k раз и n 1 +n 2 +…+ п k = п - объем выборки. Наблюдаемые значения x 1 , x 2 , …, x k называют вариантами, а последовательность вариант, записанная в возрастающем порядке, - вариационным рядом. Числа наблюдений n 1 , n 2 , …, n k называют частотами, а их отношения к объему выборки , , …, - относительными частотами. Отметим, что сумма относительных частот равна единице: .

Статистическим распределением выборки называют перечень вариант и соответствующих им частот или относительных частот. Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (непрерывное распределение). В качестве частоты, соответствующей интервалу, принимают сумму частот вариант, попавших в этот интервал. Для графического изображения статистического распределения используют полигоны и гистограммы.

Для построения полигона на оси Ох откладывают значения вариант х i , на оси Оу - значения частот п i (относительных частот ).

Пример 10.2. На рис. 10.1 показан полигон следующего распределения

Полигоном обычно пользуются в случае небольшого числа вариант. В случае большого числа вариант и в случае непрерывного распределения признака чаще строят гистограммы. Для этого интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько частичных интервалов длиной h и находят для каждого частичного интервала п i , - сумму частот вариант, попавших в i -интервал. Затем на этих интервалах, как на основаниях, строят прямоугольники с высотами (или , где п - объем выборки).

Площадь i частичного прямоугольника равна , (или ).

Следовательно, площадь гистограммы равна сумме всех частот (или относительных частот), т.е. объему выборки (или единице).

Пример 10.3. На рис. 10.2 показана гистограмма непрерывного распределения объема n = 100, приведенного в следующей таблице.