Меню
Бесплатно
Главная  /  Детские болезни  /  Е mc2 что означает. Опровержение универсальности формулы Е мс2

Е mc2 что означает. Опровержение универсальности формулы Е мс2

Если взять обычную пальчиковую батарейку из пульта от телевизора, и превратить ее в энергию, то точно такую же энергию можно получить от 250 миллиардов таких же батареек, если использовать их по-старинке. Не очень хороший получается КПД.

А то и означает, что масса и энергия - это одно и то же. То есть масса - это частный случай энергии. Энергию, заключенную в массе чего угодно, можно посчитать по этой простой формуле.

Скорость света - это очень много. Это 299 792 458 метров в секунду или, если вам так удобнее, 1 079 252 848,8 километров в час. Из-за этой большой величины получается, что если превратить чайный пакетик целиком в энергию, то этого хватит, чтобы вскипятить 350 миллиардов чайников.

У меня есть пара грамм вещества, где мне получить мою энергию?

Перевести всю массу предмета в энергию можно, только если вы где-нибудь найдете столько же антиматерии. А ее получить в домашних условиях проблематично , этот вариант отпадает.

Термоядерный синтез

Существует очень много природных термоядерных реакторов, вы можете их наблюдать, просто . Солнце и другие звезды - это и есть гигантские термоядерные реакторы.

Другой способ откусить от материи хоть сколько-то массы и превратить ее в энергию - это произвести термоядерный синтез . Берем два ядра водорода, сталкиваем их, получаем одно ядро гелия. Весь фокус в том, что масса двух ядер водорода немного больше, чем масса одного ядра гелия. Вот эта масса и превращается в энергию.

Но тут тоже не так все просто: ученые еще не научились поддерживать реакцию управляемого ядерного синтеза, промышленный термоядерный реактор фигурирует только в самых оптимистичных планах на середину этого столетия.

Ядерный распад

Ближе к реальности - реакция ядерного распада. Она вовсю используется в . Это когда два больших ядра атома распадаются на два маленьких. При такой реакции масса осколков получается меньше массы ядра, пропавшая масса и уходит в энергию.

Ядерный взрыв - это тоже ядерный распад, но неуправляемый, прекрасная иллюстрация этой формулы.

Горение

Превращение массы в энергию вы можете наблюдать прямо у вас в руках. Зажгите спичку - и вот она. При некоторых химических реакциях, например, горения, выделяется энергия от потери массы. Но она очень мала по сравнению с реакцией распада ядра, и вместо ядерного взрыва у вас в руках происходит просто горение спички.

Более того, когда вы поели, еда через сложные химические реакции благодаря мизерной потере массы отдает энергию, которую вы потом используете, чтобы сыграть в настольный теннис, ну или на диване перед телеком, чтобы поднять пульт и переключить канал.

Так что, когда вы едите бутерброд, часть его массы превратится в энергию по формуле E=mc 2 .

Эта статья включает описание термина «энергия покоя»

Эта статья включает описание термина «E=mc2»; см. также другие значения.

Формула на небоскрёбе Тайбэй 101 во время одного из мероприятий Всемирного года физики (2005)

Эквивале́нтность ма́ссы и эне́ргии - физическая концепция теории относительности, согласно которой полная энергия физического объекта (физической системы, тела) равна его (её) массе, умноженной на размерный множитель квадрата скорости света в вакууме:

E = m c 2 , {\displaystyle \ E=mc^{2},} где E {\displaystyle E} - энергия объекта, m {\displaystyle m} - его масса, c {\displaystyle c} - скорость света в вакууме, равная 299 792 458 м/с.

В зависимости от того, что понимается под терминами «масса» и «энергия», данная концепция может быть интерпретирована двояко:

  • с одной стороны, концепция означает, что масса тела (инвариантная масса, называемая также массой покоя ) равна (с точностью до постоянного множителя c²) энергии, «заключённой в нём», то есть его энергии, измеренной или вычисленной в сопутствующей системе отсчёта (системе отсчёта покоя), так называемой энергии покоя , или в широком смысле внутренней энергии этого тела,
E 0 = m c 2 , {\displaystyle E_{0}=mc^{2},} где E 0 {\displaystyle E_{0}} - энергия покоя тела, m {\displaystyle m} - его масса покоя;
  • с другой стороны, можно утверждать, что любому виду энергии (не обязательно внутренней) физического объекта (не обязательно тела) соответствует некая масса; например, для любого движущегося объекта было введено понятие релятивистской массы, равной (с точностью до множителя c²) полной энергии этого объекта (включая кинетическую),
m r e l c 2 = E , {\displaystyle \ m_{rel}c^{2}=E,} где E {\displaystyle E} - полная энергия объекта, m r e l {\displaystyle m_{rel}} - его релятивистская масса.

Первая интерпретация не является лишь частным случаем второй. Хотя энергия покоя является частным случаем энергии, а m {\displaystyle m} практически равна m r e l {\displaystyle m_{rel}} в случае нулевой или малой скорости движения тела, но m {\displaystyle m} имеет выходящее за рамки второй интерпретации физическое содержание: эта величина является скалярным (то есть выражаемым одним числом) инвариантным (неизменным при смене системы отсчёта) множителем в определении 4-вектора энергии-импульса, аналогичным ньютоновской массе и являющимся её прямым обобщением, и к тому же m {\displaystyle m} является модулем 4-импульса. Дополнительно, именно m {\displaystyle m} (а не m r e l {\displaystyle m_{rel}}) является единственным скаляром, который не только характеризует инертные свойства тела при малых скоростях, но и через который эти свойства могут быть достаточно просто записаны для любой скорости движения тела.

Таким образом, m {\displaystyle m} - инвариантная масса - физическая величина, имеющая самостоятельное и во многом более фундаментальное значение.

В современной теоретической физике концепция эквивалентности массы и энергии используется в первом смысле. Главной причиной, почему приписывание массы любому виду энергии считается чисто терминологически неудачным и поэтому практически вышло из употребления в стандартной научной терминологии, является следующая из этого полная синонимичность понятий массы и энергии. Кроме того, неаккуратное использование такого подхода может запутывать и в конечном итоге оказывается неоправданным. Таким образом, в настоящее время термин «релятивистская масса» в профессиональной литературе практически не встречается, а когда говорится о массе, имеется в виду инвариантная масса. В то же время термин «релятивистская масса» используется для качественных рассуждений в прикладных вопросах, а также в образовательном процессе и в научно-популярной литературе. Этот термин подчёркивает увеличение инертных свойств движущегося тела вместе с его энергией, что само по себе вполне содержательно.

В наиболее универсальной форме принцип был сформулирован впервые Альбертом Эйнштейном в 1905 году, однако представления о связи энергии и инертных свойств тела развивались и в более ранних работах других исследователей.

В современной культуре формула E = m c 2 {\displaystyle E=mc^{2}} является едва ли не самой известной из всех физических формул, что обуславливается её связью с устрашающей мощью атомного оружия. Кроме того, именно эта формула является символом теории относительности и широко используется популяризаторами науки.

Эквивалентность инвариантной массы и энергии покоя

Исторически принцип эквивалентности массы и энергии был впервые сформулирован в своей окончательной форме при построении специальной теории относительности Альбертом Эйнштейном. Им было показано, что для свободно движущейся частицы, а также свободного тела и вообще любой замкнутой системы частиц, выполняются следующие соотношения:

E 2 − p → 2 c 2 = m 2 c 4 p → = E v → c 2 , {\displaystyle \ E^{2}-{\vec {p}}^{\,2}c^{2}=m^{2}c^{4}\qquad {\vec {p}}={\frac {E{\vec {v}}}{c^{2}}},}

где E {\displaystyle E} , p → {\displaystyle {\vec {p}}} , v → {\displaystyle {\vec {v}}} , m {\displaystyle m} - энергия, импульс, скорость и инвариантная масса системы или частицы, соответственно, c {\displaystyle c} - скорость света в вакууме. Из этих выражений видно, что в релятивистской механике, даже когда в нуль обращаются скорость и импульс тела (массивного объекта), его энергия в нуль не обращается, оставаясь равной некоторой величине, определяемой массой тела:

E 0 = m c 2 . {\displaystyle E_{0}=mc^{2}.}

Эта величина носит название энергии покоя, и данное выражение устанавливает эквивалентность массы тела этой энергии. На основании этого факта Эйнштейном был сделан вывод, что масса тела является одной из форм энергии и что тем самым законы сохранения массы и энергии объединены в один закон сохранения.

Энергия и импульс тела являются компонентами 4-вектора энергии-импульса (четырёхимпульса) (энергия - временной, импульс - пространственными) и соответствующим образом преобразуются при переходе из одной системы отсчёта в другую, а масса тела является лоренц-инвариантом, оставаясь при переходе в другие системы отсчёта постоянной, и имея смысл модуля вектора четырёхимпульса.

Следует также отметить, что несмотря на то, что энергия и импульс частиц аддитивны, то есть для системы частиц имеем:

E = ∑ i E i p → = ∑ i p → i {\displaystyle \ E=\sum _{i}E_{i}\qquad {\vec {p}}=\sum _{i}{\vec {p}}_{i}} (1)

масса частиц аддитивной не является, то есть масса системы частиц, в общем случае, не равна сумме масс составляющих её частиц.

Таким образом, энергия (неинвариантная, аддитивная, временная компонента четырёхимпульса) и масса (инвариантный, неаддитивный модуль четырёхимпульса) - это две разные физические величины.

Эквивалентность инвариантной массы и энергии покоя означает, что в системе отсчёта, в которой свободное тело покоится (собственной), его энергия (с точностью до множителя c 2 {\displaystyle c^{2}}) равна его инвариантной массе.

Четырёхимпульс равен произведению инвариантной массы на четырёхскорость тела.

P μ = m U μ , {\displaystyle p^{\mu }=m\,U^{\mu }\!,}

Понятие релятивистской массы

После того, как Эйнштейн предложил принцип эквивалентности массы и энергии, стало очевидно, что понятие массы может интерпретироваться двояко. С одной стороны, это инвариантная масса, которая - именно в силу инвариантности - совпадает с той массой, что фигурирует в классической физике, с другой - можно ввести так называемую релятивистскую массу , эквивалентную полной (включая кинетическую) энергии физического объекта:

M r e l = E c 2 , {\displaystyle m_{\mathrm {rel} }={\frac {E}{c^{2}}},}

где m r e l {\displaystyle m_{\mathrm {rel} }} - релятивистская масса, E {\displaystyle E} - полная энергия объекта.

Для массивного объекта (тела) эти две массы связаны между собой соотношением:

M r e l = m 1 − v 2 c 2 , {\displaystyle m_{\mathrm {rel} }={\frac {m}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}},}

где m {\displaystyle m} - инвариантная («классическая») масса, v {\displaystyle v} - скорость тела.

Соответственно,

E = m r e l c 2 = m c 2 1 − v 2 c 2 . {\displaystyle E=m_{\mathrm {rel} }{c^{2}}={\frac {mc^{2}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}.}

Энергия и релятивистская масса - это одна и та же физическая величина (неинвариантная, аддитивная, временная компонента четырёхимпульса).

Эквивалентность релятивистской массы и энергии означает, что во всех системах отсчёта энергия физического объекта (с точностью до множителя c 2 {\displaystyle c^{2}}) равна его релятивистской массе.

Введённая таким образом релятивистская масса является коэффициентом пропорциональности между трёхмерным («классическим») импульсом и скоростью тела:

P → = m r e l v → . {\displaystyle {\vec {p}}=m_{\mathrm {rel} }{\vec {v}}.}

Аналогичное соотношение выполняется в классической физике для инвариантной массы, что также приводится как аргумент в пользу введения понятия релятивистской массы. Это в дальнейшем привело к тезису, что масса тела зависит от скорости его движения.

В процессе создания теории относительности обсуждались понятия продольной и поперечной массы массивной частицы (тела). Пусть сила, действующая на тело, равна скорости изменения релятивистского импульса. Тогда связь силы F → {\displaystyle {\vec {F}}} и ускорения a → = d v → / d t {\displaystyle {\vec {a}}=d{\vec {v}}/dt} существенно изменяется по сравнению с классической механикой:

F → = d p → d t = m a → 1 − v 2 / c 2 + m v → ⋅ (v → a →) / c 2 (1 − v 2 / c 2) 3 / 2 . {\displaystyle {\vec {F}}={\frac {d{\vec {p}}}{dt}}={\frac {m{\vec {a}}}{\sqrt {1-v^{2}/c^{2}}}}+{\frac {m{\vec {v}}\cdot ({\vec {v}}{\vec {a}})/c^{2}}{(1-v^{2}/c^{2})^{3/2}}}.}

Если скорость перпендикулярна силе, то F → = m γ a → , {\displaystyle {\vec {F}}=m\gamma {\vec {a}},} а если параллельна, то F → = m γ 3 a → , {\displaystyle {\vec {F}}=m\gamma ^{3}{\vec {a}},} где γ = 1 / 1 − v 2 / c 2 {\displaystyle \gamma =1/{\sqrt {1-v^{2}/c^{2}}}} - релятивистский фактор. Поэтому m γ = m r e l {\displaystyle m\gamma =m_{\mathrm {rel} }} называют поперечной массой, а m γ 3 {\displaystyle m\gamma ^{3}} - продольной.

Утверждение о том, что масса зависит от скорости, вошло во многие учебные курсы и в силу своей парадоксальности приобрело широкую известность среди неспециалистов. Однако в современной физике избегают использовать термин «релятивистская масса», используя вместо него понятие энергии, а под термином «масса» понимая инвариантную массу (покоя). В частности, выделяются следующие недостатки введения термина «релятивистская масса»:

  • неинвариантность релятивистской массы относительно преобразований Лоренца;
  • синонимичность понятий энергия и релятивистская масса, и, как следствие, избыточность введения нового термина;
  • наличие различных по величине продольной и поперечной релятивистских масс и невозможность единообразной записи аналога второго закона Ньютона в виде
m r e l d v → d t = F → ; {\displaystyle m_{\mathrm {rel} }{\frac {d{\vec {v}}}{dt}}={\vec {F}};}
  • методологические сложности преподавания специальной теории относительности, наличие специальных правил, когда и как следует пользоваться понятием «релятивистская масса» во избежание ошибок;
  • путаница в терминах «масса», «масса покоя» и «релятивистская масса»: часть источников просто массой называют одно, часть - другое.

Несмотря на указанные недостатки, понятие релятивистской массы используется и в учебной, и в научной литературе. Следует, правда, отметить, что в научных статьях понятие релятивистской массы используется по большей части только при качественных рассуждениях как синоним увеличения инертности частицы, движущейся с околосветовой скоростью.

Гравитационное взаимодействие

В классической физике гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, и его величина определяется гравитационной массой тела, которая с высокой степенью точности равна по величине инертной массе, о которой шла речь выше, что позволяет говорить о просто массе тела.

В релятивистской физике гравитация подчиняется законам общей теории относительности, в основе которой лежит принцип эквивалентности, заключающийся в неотличимости явлений, происходящих локально в гравитационном поле, от аналогичных явлений в неинерциальной системе отсчёта, движущейся с ускорением, равным ускорению свободного падения в гравитационном поле. Можно показать, что данный принцип эквивалентен утверждению о равенстве инертной и гравитационной масс.

В общей теории относительности энергия играет ту же роль, что и гравитационная масса в классической теории. Действительно, величина гравитационного взаимодействия в этой теории определяется так называемым тензором энергии-импульса, являющимся обобщением понятия энергии.

В простейшем случае точечной частицы в центрально-симметричном гравитационном поле объекта, масса которого много больше массы частицы, сила, действующая на частицу, определяется выражением:

F → = − G M E c 2 (1 + β 2) r → − (r → β →) β → r 3 {\displaystyle {\vec {F}}=-GM{\frac {E}{c^{2}}}{\frac {(1+\beta ^{2}){\vec {r}}-({\vec {r}}{\vec {\beta }}){\vec {\beta }}}{r^{3}}}}

где G - гравитационная постоянная, M - масса тяжёлого объекта, E - полная энергия частицы, β = v / c , {\displaystyle \beta =v/c,} v - скорость частицы, r → {\displaystyle {\vec {r}}} - радиус-вектор, проведённый из центра тяжёлого объекта в точку нахождения частицы. Из этого выражения видна главная особенность гравитационного взаимодействия в релятивистском случае по сравнению с классической физикой: оно зависит не только от массы частицы, но и от величины и направления её скорости. Последнее обстоятельство, в частности, не позволяет ввести однозначным образом некую эффективную гравитационную релятивистскую массу, сводившую бы закон тяготения к классическому виду.

Предельный случай безмассовой частицы

Важным предельным случаем является случай частицы, масса которой равна нулю. Примером такой частицы является фотон - частица-переносчик электромагнитного взаимодействия. Из приведённых выше формул следует, что для такой частицы справедливы следующие соотношения:

E = p c , v = c . {\displaystyle E=pc,\qquad v=c.}

Таким образом, частица с нулевой массой вне зависимости от своей энергии всегда двигается со скоростью света. Для безмассовых частиц введение понятия «релятивистской массы» в особой степени не имеет смысла, поскольку, например, при наличии силы в продольном направлении скорость частицы постоянна, а ускорение, следовательно, равно нулю, что требует бесконечной по величине эффективной массы тела. В то же время, наличие поперечной силы приводит к изменению направления скорости, и, следовательно, «поперечная масса» фотона имеет конечную величину.

Аналогично бессмысленно для фотона вводить эффективную гравитационную массу. В случае центрально-симметричного поля, рассмотренного выше, для фотона, падающего вертикально вниз, она будет равна E / c 2 {\displaystyle E/c^{2}} , а для фотона, летящего перпендикулярно направлению на гравитационный центр, - 2 E / c 2 {\displaystyle 2E/c^{2}} .

Практическое значение

Формула на палубе первого авианосца с ядерной силовой установкой USS Enterprise 31 июля 1964

Полученная А. Эйнштейном эквивалентность массы тела запасённой в теле энергии стала одним из главных практически важных результатов специальной теории относительности. Соотношение E 0 = m c 2 {\displaystyle E_{0}=mc^{2}} показало, что в веществе заложены огромные (благодаря квадрату скорости света) запасы энергии, которые могут быть использованы в энергетике и военных технологиях.

Количественные соотношения между массой и энергией

В международной системе единиц СИ отношение энергии и массы E / m выражается в джоулях на килограмм, и оно численно равно квадрату значения скорости света c в метрах в секунду:

E / m = c ² = (299 792 458 м/с)² = 89 875 517 873 681 764 Дж/кг (≈9,0·1016 джоулей на килограмм).

Таким образом, 1 грамм массы эквивалентен следующим значениям энергии:

  • 89,9 тераджоулей (89,9 ТДж)
  • 25,0 миллионов киловатт-часов (25 ГВт·ч),
  • 21,5 миллиардов килокалорий (≈21 Ткал),
  • 21,5 килотонн в тротиловом эквиваленте (≈21 кт).

В ядерной физике часто применяется значение отношения энергии и массы, выраженное в мегаэлектронвольтах на атомную единицу массы - ≈931,494 МэВ/а.е.м.

Примеры взаимопревращения энергии покоя и кинетической энергии

Энергия покоя способна переходить в кинетическую энергию частиц в результате ядерных и химических реакций, если в них масса вещества, вступившего в реакцию, больше массы вещества, получившегося в результате. Примерами таких реакций являются:

  • Аннигиляция пары частица-античастица с образованием двух фотонов. Например, при аннигиляции электрона и позитрона образуется два гамма-кванта, и энергия покоя пары полностью переходит в энергию фотонов:
e − + e + → 2 γ . {\displaystyle e^{-}+e^{+}\rightarrow 2\gamma .}
  • Термоядерная реакция синтеза атома гелия из протонов и электронов, в которой разность масс гелия и протонов преобразуется в кинетическую энергию гелия и энергию электронных нейтрино
2 e − + 4 p + → 2 4 H e + 2 ν e + E k i n . {\displaystyle 2e^{-}+4p^{+}\rightarrow {}_{2}^{4}\mathrm {He} +2\nu _{e}+E_{\mathrm {kin} }.}
  • Реакция деления ядра урана-235 при столкновении с медленным нейтроном. При этом ядро делится на два осколка с меньшей суммарной массой с испусканием двух или трёх нейтронов и освобождением энергии порядка 200 МэВ, что составляет порядка 1 процента от массы атома урана. Пример такой реакции:
92 235 U + 0 1 n → 36 93 K r + 56 140 B a + 3 0 1 n . {\displaystyle {}_{92}^{235}\mathrm {U} +{}_{0}^{1}n\rightarrow {}_{36}^{93}\mathrm {Kr} +{}_{56}^{140}\mathrm {Ba} +3~{}_{0}^{1}n.}
  • Реакция горения метана:
C H 4 + 2 O 2 → C O 2 + 2 H 2 O . {\displaystyle \mathrm {CH} _{4}+2\mathrm {O} _{2}\rightarrow \mathrm {CO} _{2}+2\mathrm {H} _{2}\mathrm {O} .}

В этой реакции выделяется порядка 35,6 МДж тепловой энергии на кубический метр метана, что составляет порядка 10−10 от его энергии покоя. Таким образом, в химических реакциях преобразование энергии покоя в кинетическую энергию значительно ниже, чем в ядерных. На практике этим вкладом в изменение массы прореагировавших веществ в большинстве случаев можно пренебречь, так как оно обычно лежит вне пределов возможности измерений.

Важно отметить, что в практических применениях превращение энергии покоя в энергию излучения редко происходит со стопроцентной эффективностью. Теоретически совершенным превращением было бы столкновение материи с антиматерией, однако в большинстве случаев вместо излучения возникают побочные продукты и вследствие этого только очень малое количество энергии покоя превращается в энергию излучения.

Существуют также обратные процессы, увеличивающие энергию покоя, а следовательно и массу. Например, при нагревании тела увеличивается его внутренняя энергия, в результате чего возрастает масса тела. Другой пример - столкновение частиц. В подобных реакциях могут рождаться новые частицы, массы которых существенно больше, чем у исходных. «Источником» массы таких частиц является кинетическая энергия столкновения.

История и вопросы приоритета

Джозеф Джон Томсон первым попытался связать энергию и массу

Представление о массе, зависящей от скорости, и об имеющейся связи между массой и энергией начало формироваться ещё до появления специальной теории относительности. В частности, в попытках согласовать уравнения Максвелла с уравнениями классической механики некоторые идеи были выдвинуты в трудах Генриха Шрамма (1872), Н. А. Умова (1874), Дж. Дж. Томсона (1881), О. Хевисайда (1889), Р. Сирла (англ.)русск., М. Абрагама, Х. Лоренца и А. Пуанкаре. Однако только у А. Эйнштейна эта зависимость универсальна, не связана с эфиром и не ограничена электродинамикой.

Считается, что впервые попытка связать массу и энергию была предпринята в работе Дж. Дж. Томсона, появившейся в 1881 году. Томсон в своей работе вводит понятие электромагнитной массы, называя так вклад, вносимый в инертную массу заряженного тела электромагнитным полем, создаваемым этим телом.

Идея наличия инерции у электромагнитного поля присутствует также и в работе О. Хевисайда, вышедшей в 1889 году. Обнаруженные в 1949 году черновики его рукописи указывают на то, что где-то в это же время, рассматривая задачу о поглощении и излучении света, он получает соотношение между массой и энергией тела в виде E = m c 2 {\displaystyle E=mc^{2}} .

В 1900 году А. Пуанкаре опубликовал работу, в которой пришёл к выводу, что свет как переносчик энергии должен иметь массу, определяемую выражением E / v 2 , {\displaystyle E/v^{2},} где E - переносимая светом энергия, v - скорость переноса.

Хендрик Антон Лоренц указывал на зависимость массы тела от его скорости

В работах М. Абрагама (1902 год) и Х. Лоренца (1904 год) было впервые установлено, что, вообще говоря, для движущегося тела нельзя ввести единый коэффициент пропорциональности между его ускорением и действующей на него силой. Ими были введены понятия продольной и поперечной масс, применяемые для описания динамики частицы, движущейся с околосветовой скоростью, с помощью второго закона Ньютона. Так, Лоренц в своей работе писал:

Экспериментально зависимость инертных свойств тел от их скорости была продемонстрирована в начале XX века в работах В. Кауфмана (1902 год) и А. Бухерера 1908 год).

В 1904-1905 годах Ф. Газенорль в своей работе приходит к выводу, что наличие в полости излучения проявляется в том числе и так, будто бы масса полости увеличилась.

Альберт Эйнштейн сформулировал принцип эквивалентности энергии и массы в наиболее общем виде

В 1905 году появляется сразу целый ряд основополагающих работ А. Эйнштейна, в том числе и работа, посвящённая анализу зависимости инертных свойств тела от его энергии. В частности, при рассмотрении испускания массивным телом двух «количеств света» в этой работе впервые вводится понятие энергии покоящегося тела и делается следующий вывод:

В 1906 году Эйнштейн впервые говорит о том, что закон сохранения массы является всего лишь частным случаем закона сохранения энергии.

В более полной мере принцип эквивалентности массы и энергии был сформулирован Эйнштейном в работе 1907 года, в которой он пишет

Под упрощающим предположением здесь имеется в виду выбор произвольной постоянной в выражении для энергии. В более подробной статье, вышедшей в том же году, Эйнштейн замечает, что энергия является также и мерой гравитационного взаимодействия тел.

В 1911 году выходит работа Эйнштейна, посвящённая гравитационному воздействию массивных тел на свет. В этой работе им приписывается фотону инертная и гравитационная масса равная E / c 2 {\displaystyle E/c^{2}} и для величины отклонения луча света в поле тяготения Солнца выводится значение 0,83 дуговой секунды, что в два раза меньше правильного значения, полученного им же позже на основе развитой общей теории относительности. Интересно, что то же самое половинное значение было получено И. фон Зольднером ещё в 1804 году, но его работа осталась незамеченной.

Экспериментально эквивалентность массы и энергии была впервые продемонстрирована в 1933 году. В Париже Ирен и Фредерик Жолио-Кюри сделали фотографию процесса превращения кванта света, несущего энергию, в две частицы, имеющих ненулевую массу. Приблизительно в то же время в Кембридже Джон Кокрофт и Эрнест Томас Синтон Уолтон наблюдали выделение энергии при делении атома на две части, суммарная масса которых оказалась меньше, чем масса исходного атома.

Влияние на культуру

С момента открытия формула E = m c 2 {\displaystyle E=mc^{2}} стала одной из самых известных физических формул и является символом теории относительности. Несмотря на то, что исторически формула была впервые предложена не Альбертом Эйнштейном, сейчас она ассоциируется исключительно с его именем, например, именно эта формула была использована в качестве названия вышедшей в 2005 году телевизионной биографии известного учёного. Известности формулы способствовало широко использованное популяризаторами науки контринтуитивное заключение, что масса тела увеличивается с увеличением его скорости. Кроме того, с этой же формулой ассоциируется мощь атомной энергии. Так, в 1946 году журнал «Time» на обложке изобразил Эйнштейна на фоне гриба ядерного взрыва с формулой E = m c 2 {\displaystyle E=mc^{2}} на нём.

E=MC2 (значения) это:

E=MC2 (значения)

E = mc 2 - формула, выражающая эквивалентность массы и энергии

Название E=MC2 или E=MC2 может относиться к:

Николай рудковский

Что означает формула e = mc2 ?

Эта формула называется " специальная теория относительности Эйнштейна"

E = mc2
где:
е - полная энергия тела,
м - масса тела,
с2 - скорость света в вакууме в квадрате

Формула означает, что энергия пропорциональна массе.
Из-за того, что скорость света в вакууме очень большая (300 тысяч км/сек)
а в формуле она ещё и в квадрате, получается, что тело даже очень маленькой массы обладает очень большой энергией.
Например энергия, выделившаяся при ядерном взрыве в Хиросиме, соответствует полной энергии тела массой меньше 1 грамма

Эквивалентность массы и энергии. В двух словах - теория относительности. Вообщем то, за что Эйнштейн получил Нобелевскую премию.

E - полная энергия тела
m - масса тела
c - скорость света в вакууме

В чем смысл формулы E=mc^2

Трудное детство

формула E=mc^2 - формула связи массы и энергии, впервые введена эйнштейном в специальной теории относительности вот что он пишет по этому поводу. ,классическая физика допускала две субстанции - вещество и энергию. первое имело вес, а вторая была невесома. в классической физике мы имели два закона сохранения: один для вещества, другой для энергии. ..согласно теории относительности, нет существенного различия между массой и энергией. энергия имеет массу, а масса представляет собой энергию. вместо двух законов сохранения мы имеем только один: закон сохранения массы-энергии.,

Алексей коряков

Очень философский смысл.

Религия утверждает, что вначале было слово.
Наука - материя первична.

А эта формула по сути примиряет оба подхода, заявляя, что масса и энергия - это два различных проявления одной сущности.

Это коротко. Больше написать просто лень.

Что означает формула E=MC2?

Marktolkien

Символ теории относительности, формула E=mc2 дает возможность вычислить энергию объекта (Е) через его массу (м) и скорость света (с), равную 300 000 000 м/с. Данный принцип эквивалентности массы и энергии вывел Альберт Эйнштейн. Из уравнения следует, что масса является одной из форм энергии. Превращение массы в энергию можно наблюдать на примере горения вещества. Другой пример - поедание бутерброда, чья масса переходит в вашу энергию по той же формуле.

Илья ульянов

Энергия равно произведению массы на скорость света в квадрате. То есть если хотите рассчитать энергию объекта вам надо умножить его массу на скорость света в квадрате. Формула стала символом фундаментального знания о вселенной.

/ Физический смысл формулы E = mc 2

Физический смысл формулы E = mc 2

Вряд ли найдётся взрослый человек, не знающий эту формулу. Иногда её даже называют самой знаменитой формулой в мире. Она стала известной человечеству после того, как Эйнштейн создал свою теорию относительности. Согласно Эйнштейну, его формула показывает не просто связь между материей и энергией, а равнозначность материи и энергии. Иными словами, по этой формуле энергия может превратиться в материю, а материя может превратиться в энергию.

Но мне известна и другая формула (да и не только мне, а всем специалистам по тепловым процессам): Q = mr, где Q — количество тепла, m — масса, r — теплота фазового перехода. Любые фазовые переходы (испарение и конденсация, плавление и кристаллизация, абляция и сухая возгонка) описываются этой формулой. При подводе тепла в количестве Q (или его отводе) в новое фазовое состояние переходит такое количество вещества m, которое прямо пропорционально количеству тепла Q и обратно пропорционально теплоте фазового перехода r. А тепло — это разновидность энергии. Но никто и никогда не делал из этого факта вывод, будто в вещество превращается само тепло, то есть энергия. Почему же с формулой E = mc 2 произошла такая пертурбация?

Когда мне удалось получить формулу энергии физического вакуума, вот тогда мне и удалось ответить на этот вопрос. Оказалось, что в самом общем виде энергия физического вакуума описывается этой известной формулой E = mc 2 . А её физический смысл в точности совпадает с физическим смыслом формулы Q = mr: когда мы подводим к вакууму (или эфиру, как его называли раньше) энергию в количестве Е, вакуум порождает такое количество вещества m, которое прямо пропорционально подведённой энергии Е и обратно пропорционально энергии фазового перехода с 2 . Иными словами, никакого перехода энергии в вещество или материю не наблюдается.

А причина допущенной Эйнштейном ошибки относительно физического смысла его формулы заключается в отрицании им реального существования эфира-физвакуума. Если мы полагаем, что эфир не существует, тогда у нас получится, что вещество рождается в самом настоящем смысле слова из пустоты. Но каждому понятно, что из ничего получить что-то невозможно. Поэтому приходится искать иной источник появления вещества. Вследствие того, что данный процесс рождения вещества описывается формулой E = mc 2 , физики настолько привыкают иметь дело с энергией, что начинают воспринимать её как нечто реально существующее, а не характеристику, коей она всего лишь и является. И отсюда остаётся всего лишь один шаг, чтобы заявить о преобразовании в вещество самой энергии.

Скептики могут возразить мне тем, что мои рассуждения опровергаются результатами экспериментов. Мол, эксперименты на ускорителях показывают, что масса элементарных частиц увеличивается с ростом скорости, то есть с ростом энергии, подводимой к частице для увеличения её скорости. И из этого факта делается вывод, будто в данных экспериментах энергия преобразуется в массу. Но когда я поднял информацию о том, как именно выполнялись эти и другие похожие эксперименты, то обнаружил интересную вещь: оказывается, за всю историю научных изысканий ни в одном эксперименте не измеряли массу напрямую, но всегда измеряли затраты энергии, а затем перебрасывали энергию на массу по формуле E = mc 2 и говорили об увеличении массы. Однако, можно предложить иное объяснение повышенным затратам энергии в опытах на ускорителе: подводимая к частице энергия преобразуется не в массу частицы, а в преодоление сопротивления окружающего нас эфира-физвакуума. Когда любой объект (и элементарная частица тоже) движется ускоренно, он своим неравномерным движением деформирует эфир-вакуум, а тот отвечает на это созданием сил сопротивления, для преодоления которых требуется затратить энергию. И чем больше будет скорость объекта, тем больше будет деформация эфира-вакуума, тем больше будут силы сопротивления, тем больше понадобится энергии для их преодоления.

Для того, чтобы выяснить, какая концепция верна (традиционная в виде увеличения массы с увеличением скорости или альтернативная в форме преодоления сил сопротивления эфира-вакуума), необходимо поставить такой эксперимент, в котором масса движущейся частицы измерялась бы напрямую без измерения затрат энергии. Но каков должен быть этот эксперимент, я пока не придумал. Может, придумает кто-то другой?

И. А. Прохоров
  • Перевод

Самое знаменитое уравнение Эйнштейна вычисляется более красиво, чем это можно было бы ожидать.

Из специальной теории относительности вытекает, что масса и энергия являются разными проявлениями одного и того же – концепция, среднему уму незнакомая.
- Альберт Эйнштейн

Некоторые научные концепции настолько меняют мир и настолько глубоки, что практически каждый знает о них, даже если полностью и не понимает. Почему бы не поработать над этим вместе? Каждую неделю вы отправляете ваши вопросы и предложения, и на этой неделе я выбрал вопрос Марка Лиюва, который спрашивает:

Эйнштейн вывел уравнение E = mc 2 . Но единицы энергии, массы, времени, длины уже были известны до Эйнштейна. Так как же оно так красиво получается? Почему там нет какой-нибудь константы для длины или времени? Почему это не E = amc 2 , где a – какая-нибудь константа?

Если бы наша Вселенная не была устроена так, как сейчас, то всё могло бы быть по-другому. Давайте посмотрим, что я имею в виду.

С одной стороны, у нас имеются объекты с массой: от галактик, звёзд и планет до самых мелких молекул, атомов и фундаментальных частиц. Хотя они и крохотные, у каждой из компонент того, что известно нам под именем материи, имеется фундаментальное свойство массы, что означает, что даже если исключить его движение, даже если замедлить его до полной остановки, он всё равно будет оказывать влияние на все остальные объекты Вселенной.


Конкретно, он оказывает гравитационное притяжение на всё остальное во Вселенной, неважно, на каком расстоянии находится удалённый объект. Он притягивает всё к себе, испытывает притяжение ко всему остальному, а также обладает энергией, присущей самому его существованию.

Последнее утверждение контринтуитивно, поскольку об энергии, по крайней мере, в физике, говорят, как о возможности что-либо сделать – о возможности совершать работу. А что можно сделать, если ты просто сидишь на месте?

Перед тем, как ответить, давайте посмотрим на другую сторону монеты – вещи без массы.

С другой стороны, существуют вещи, не имеющие массы – например, свет. У этих частиц есть определённая энергия, и это легко понять, наблюдая их взаимодействие с другими вещами – при поглощении свет передаёт им свою энергию. Свет с достаточной энергией может разогревать материю, добавлять кинетическую энергию (и скорость), вышибать электроны на верхние энергетические уровни или вообще ионизировать, в зависимости от энергии.

Более того, количество энергии, содержащейся в безмассовой частице, определяется только её частотой и длиной волны, произведение которых всегда равняется скорости движения частицы: скорости света. Значит, у более длинных волн частоты меньше, и энергия меньше, а у коротких – частоты и энергия выше. Массивную частицу можно замедлить, а попытки отобрать энергию у безмассовой приведут лишь к удлинению её волны, а не к изменению скорости.

Памятуя о вышесказанном, подумаем, как масса-энергия может быть эквивалентной работе? Да, можно взять частицу материи и частицу антиматерии (электрон и позитрон), столкнуть их и получить безмассовые частицы (два фотона). Но почему энергии двух фотонов равны массам электрона и позитрона, умноженным на квадрат скорости света? Почему там нет другого множителя, почему уравнение точно приравнивает E и mc 2 ?

Что интересно, если верить СТО, уравнение просто обязано выглядеть, как E=mc 2 , без всяких отклонений. Поговорим о причинах этого. Для начала представьте, что у вас есть коробочка в космосе. Она неподвижна, и с двух сторон у неё зеркала, а внутри находится фотон, летящий к одному из зеркал.

Изначально коробочка не двигается, но поскольку фотоны обладают энергией (и импульсом), когда фотон сталкивается с зеркалом с одной стороны коробки и отскакивает, коробка начнёт движение в том направлении, в котором изначально двигался фотон. Когда фотон достигнет другой стороны, он отразится от зеркала с другой стороны, изменяя импульс коробки обратно до нуля. И он продолжит отражаться таким образом, в то время как коробка половину времени будет двигаться в одну сторону, а другую половину – оставаться неподвижной.

В среднем коробка будет двигаться и, следовательно, так как у неё есть масса, будет иметь определённую кинетическую энергию, благодаря энергии фотона. Но важно также помнить про импульс, количество движения объекта. Импульс фотонов связан с их энергией и длиной волны очень просто: чем короче волна и выше энергия, тем выше импульс.

Подумаем о том, что это значит, и для этого проведём ещё один эксперимент. Представьте, что происходит, когда изначально двигается только сам фотон. У него будет определённое количество энергии и импульс. Оба свойства должны сохраняться, поэтому в начальный момент энергия фотона определена его длиной волны, а у коробки есть только энергия покоя – какая бы она ни была – и фотон обладает всем импульсом системы, а у коробки импульс нулевой.

Затем фотон сталкивается с коробкой и временно поглощается. Импульс и энергия должны сохраняться – это основные законы сохранения Вселенной. Если фотон поглощён, то существует только один способ сохранить импульс – коробка должна двигаться с определённой скоростью в том же направлении, в котором двигался фотон.

Пока всё нормально. Только теперь мы можем спросить себя, какова энергия коробки. Получается, что если мы идём от нашей обычной формулы о кинетической энергии, K E = ½mv 2 , мы предположительно знаем массу коробки, и, исходя из понятия импульса, её скорость. Но если мы сравним энергию коробки с энергией фотона, которой он обладал до столкновения, мы увидим, что у коробки энергии недостаточно.

Проблема? Нет, это довольно просто решить. Энергия системы коробка/фотон равна массе покоя коробки плюс кинетической энергии коробки плюс энергии фотона. Когда коробка поглощает фотон, большая часть его энергии переходит в увеличение массы коробки. Когда коробка поглотила фотон, её масса меняется (увеличивается) по сравнению с той, что была до столкновения.

Когда коробка вновь испускает фотон в другом направлении, она получает ещё больший импульс и скорость (что компенсируется отрицательным импульсом фотона в обратном направлении), ещё больше кинетической энергии (и у фотона есть энергия), но теряет взамен часть массы покоя. Если всё подсчитать (есть три различных способа это сделать, а тут ещё и описание), можно обнаружить, что единственное преобразование массы, позволяющее сохранить энергию и импульс, будет E = mc 2 .

Если добавить любую константу, уравнение перестанет быть сбалансированным, и вы будете терять или приобретать энергию каждый раз при испускании или поглощении фотона. Обнаружив антиматерию в 1930-х, мы непосредственно увидели подтверждение того, что можно превратить энергию в массу и обратно, и результаты превращений точно совпадали с E = mc 2 , но именно мысленные эксперименты позволили вывести эту формулу за несколько десятилетий до наблюдений. Только поставив фотону в соответствие эффективную массу, эквивалентную m = E/c 2 , мы можем обеспечить сохранение энергии и импульса. И хотя мы говорим E = mc 2 , Эйнштейн впервые записал формулу по-другому, присвоив энергетически эквивалентную массу безмассовым частицам.

Так что, спасибо за прекрасный вопрос, Марк, и надеюсь, что этот мысленный эксперимент поможет тебе понять, почему нам нужна не только эквивалентность массы и энергии, но и почему в этом уравнении есть только одно возможное значение для «константы», которое поможет сохранить энергию и импульс – а этого требует наша Вселенная. Единственное уравнение, которое работает, это E = mc 2 .