Меню
Бесплатно
Главная  /  Мода и стиль  /  Деление окружности на любое количество равных частей. Деление окружности на равные части и построение правильных вписанных многоугольников

Деление окружности на любое количество равных частей. Деление окружности на равные части и построение правильных вписанных многоугольников

Окружностью называется замкнутая кривая линия, каждая точка которой расположена на одинаковом расстоянии от одной точки О, называемой центром.

Прямые линии, соединяющие любую точку окружности с её центром, называют радиусами R.

Прямая АВ, соединяющая две точки окружности и проходящая через её центр О, называется диаметром D.

Части окружностей называются дугами .

Прямая СD, соединяющая две точки на окружности, называется хордой .

Прямая МN,которая имеет только одну общую точку с окружностью называется касательной .

Часть круга, ограниченная хордой СD и дугой, называется сигментом .

Часть круга, ограниченная двумя радиусами и дугой, называется сектором .

Две взаимно перпендикулярные горизонтальная и вертикальная линии, пересекающиеся в центре окружности, называются осями окружности .

Угол, образованный двумя радиусами КОА, называется центральным углом .

Два взаимно перпендикулярных радиуса составляют угол в 90 0 и ограничивают 1/4 окружности.

Деление окружности на части

Проводим окружность с горизонтальной и вертикальной осями, которые делят её на 4-ре равные части. Проведённые с помощью циркуля или угольника под 45 0 , две взаимно перпендикулярные линии делят окружность на 8-мь равных частей.

Деление окружности на 3 и 6 равных частей (кратные 3 трём)

Для деления окружности на 3, 6 и кратное им количество частей, проводим окружность заданного радиуса и соответствующие оси. Деление можно начинать от точки пересечения горизонтальной или вертикальной оси с окружностью. Заданный радиус окружности последовательно откладывается 6-ть раз. Затем полученные точки на окружности последовательно соединяются прямыми линиями и образуют правильный вписанный шести-угольник. Соединение точек через одну даёт равносторонний треугольник, и деление окружности на три равные части.

Построение правильного пятиугольника выполняется следующим образом. Проводим две взаимно перпендикулярные оси окружности равные диаметру окружности. Делим правую половину горизонтального диаметра пополам с помощью дуги R1. Из полученной точки "а" в середине этого отрезка радиусом R2 проводим дугу окружности до пересечения с горизонтальным диаметром в точке "b". Радиусом R3 из точки "1" проводят дугу окружности до пересечения с заданной окружностью (т.5) и получают сторону правильного пятиугольника. Расстояние "b-О" даёт сторону правильного десятиугольника.

Деление окружности на N-ное количество одинаковых частей (построение правильного многоугольника с N сторон)

Выполняется следующим образом. Проводим горизонтальную и вертикальную взаимно перпендикулярные оси окружности. Из верхней точки "1" окружности проводим под произвольным углом к вертикальной оси прямую линию. На ней откладываем равные отрезки произвольной длины, число которых равно числу частей на которое мы делим данную окружность, например 9. Конец последнего отрезка соединяем с нижней точкой вертикального диаметра. Проводим линии, параллельные полученной, из концов отложенных отрезков до пересечения с вертикальным диаметром, разделив таким образом вертикальный диаметр данной окружности на заданное количество частей. Радиусом равным диаметру окружности, из нижней точки вертикальной оси проводим дугу MN до пересечения с продолжением горизонтальной оси окружности. Из точек M и N проводим лучи через чётные (или нечётные) точки деления вертикального диаметра до пересечения с окружностью. Полученные отрезки окружности будут являться искомыми, т.к. точки 1, 2, …. 9 делят окружность на 9-ть (N) равных частей.

Для нахождения центра дуги окружности нужно выполнить следующие построения: на данной дуге отмечаем четыре произвольные точки А, В, С, D и соединяем их попарно хордами АВ и СD. Каждую из хорд при помощи циркуля делим пополам, получив, таким образом, перпендикуляр, проходящий через середину соответствующей хорды. Взаимное пересечение этих перпендикуляров даёт центр данной дуги и соответствующей ей окружности.

Деление окружности на три равные части. Устанавливают угольник с углами 30 и 60° большим катетом параллельно одной из центровых линий. Вдоль гипотенузы из точки 1 (первое деление) проводят хорду (рис. 2.11, а ), получая второе деление – точку 2. Перевернув угольник и проведя вторую хорду, получают третье деление – точку 3 (рис. 2.11, б ). Соединив точки 2 и 3; 3 и 1 прямыми, получают равносторонний треугольник.

Рис. 2.11.

а, б – с помощью угольника; в – с помощью циркуля

Ту же задачу можно решить с помощью циркуля. Поставив опорную ножку циркуля в нижний или верхний конец диаметра (рис. 2.11, в ), описывают дугу, радиус которой равен радиусу окружности. Получают первое и второе деления. Третье деление находится на противоположном конце диаметра.

Деление окружности на шесть равных частей

Раствор циркуля устанавливают равным радиусу R окружности. Из концов одного из диаметров окружности (из точек 1, 4 ) описывают дуги (рис. 2.12, а, б ). Точки 1, 2, 3, 4, 5, 6 делят окружность на шесть равных частей. Соединив их прямыми, получают правильный шестиугольник (рис. 2.12, б ).

Рис. 2.12.

Ту же задачу можно выполнить с помощью линейки и угольника с углами 30 и 60° (рис. 2.13). Гипотенуза угольника при этом должна проходить через центр окружности.

Рис. 2.13.

Деление окружности на восемь равных частей

Точки 1, 3, 5, 7 лежат на пересечении центровых линий с окружностью (рис. 2.14). Еще четыре точки находят с помощью угольника с углами 45°. При получении точек 2, 4, 6, 8 гипотенуза угольника проходит через центр окружности.

Рис. 2.14.

Деление окружности на любое число равных частей

Для деления окружности на любое число равных частей пользуются коэффициентами, приведенными в табл. 2.1.

Длину l хорды, которую откладывают на заданной окружности, определяют по формуле l = dk, где l – длина хорды; d – диаметр заданной окружности; k – коэффициент, определяемый по табл. 1.2.

Таблица 2.1

Коэффициенты для деления окружностей

Чтобы разделить окружность заданного диаметра 90 мм, например, на 14 частей, поступают следующим образом.

В первой графе табл. 2.1 находят число делений п, т.е. 14. Из второй графы выписывают коэффициент k, соответствующий числу делений п. В данном случае он равен 0,22252. Диаметр заданной окружности умножают на коэффициент и получают длину хорды l= dk = 90 0,22252 = 0,22 мм. Полученную длину хорды откладывают циркулем-измерителем 14 раз на заданной окружности.

Нахождение центра дуги и определение величины радиуса

Задана дуга окружности, центр и радиус которой неизвестны.

Для их определения нужно провести две непараллельные хорды (рис. 2.15, а ) и восставить перпендикуляры к серединам хорд (рис. 2.15, б ). Центр О дуги находится на пересечении этих перпендикуляров.

Рис. 2.15.

Сопряжения

При выполнении машиностроительных чертежей, а также при разметке заготовок деталей на производстве часто приходится плавно соединять прямые линии с дугами окружностей или дугу окружности с дугами других окружностей, т.е. выполнять сопряжение.

Сопряжением называют плавный переход прямой в дугу окружности или одной дуги в другую.

Для построения сопряжений надо знать величину радиуса сопряжений, найти центры, из которых проводят дуги, т.е. центры сопряжений (рис. 2.16). Затем нужно найти точки, в которых одна линия переходит в другую, т.е. точки сопряжений. При построении чертежа сопрягающиеся линии нужно доводить точно до этих точек. Точка сопряжения дуги окружности и прямой лежит на перпендикуляре, опущенном из центра дуги на сопрягаемую прямую (рис. 2.17, а ), или на линии, соединяющей центры сопрягаемых дуг (рис. 2.17, б ). Следовательно, для построения любого сопряжения дугой заданного радиуса нужно найти центр сопряжения и точку (точки ) сопряжения.

Рис. 2.16.

Рис. 2.17.

Сопряжение двух пересекающихся прямых дугой заданного радиуса. Даны пересекающиеся под прямым, острым и тупым углами прямые линии (рис. 2.18, а ). Нужно построить сопряжения этих прямых дугой заданного радиуса R.

Рис. 2.18.

Для всех трех случаев можно применять следующее построение.

1. Находят точку О – центр сопряжения, который должен лежать на расстоянии R от сторон угла, т.е. в точке пересечения прямых, проходящих параллельно сторонам угла на расстоянии R от них (рис. 2.18, б ).

Для проведения прямых, параллельных сторонам угла, из произвольных точек, взятых на прямых, раствором циркуля, равным R, делают засечки и к ним проводят касательные (рис. 2.18, б ).

  • 2. Находят точки сопряжений (рис. 2.18, в). Для этого из точки О опускают перпендикуляры на заданные прямые.
  • 3. Из точки О, как из центра, описывают дугу заданного радиуса R между точками сопряжений (рис. 2.18, в).

Во время ремонта часто приходится иметь дело с окружностями, особенно если хочется создать интересные и оригинальные элементы декора. Также часто приходится делить их на равные части. Чтобы сделать это есть несколько методов. Например, можно нарисовать правильный многоугольник или использовать известные всем еще со школы инструменты. Так, для того чтобы разделить окружность на равные части понадобятся сама окружность с четко определенным центром, карандаш, транспортир, а также линейка и циркуль.

Деление окружности при помощи транспортира

Разделение окружности на равные части при помощи вышеупомянутого инструмента является, пожалуй, самым простым. Известно, что окружность – это 360 градусов. Разделив это значение на нужное количество частей можно узнать, сколько будет занимать каждая часть (см. фото).

Далее, начиная с любой точки, можно сделать пометки, соответствующие проведенным расчетам. Этот метод хорош, когда окружность нужно разделить на 5, 7, 9 и т.д. частей. Например, если фигуру необходимо разделить на 9 частей, отметки будут находиться на 0, 40, 80, 120, 160, 200, 240, 280 и 320 градусах.

Деление на 3 и 6 частей

Чтобы правильно разделить окружность на 6 частей можно использовать свойство правильного шестиугольника, т.е. его самая длинная диагональ должна составлять две длины его стороны. Для начала циркуль необходимо растянуть на длину равную радиусу фигуры. Далее оставляя одну из ножек инструмента в любой точке окружности, второй необходимо сделать засечку, после чего повторяя манипуляции, получится сделать шесть точек, соединив которые можно получить шестиугольник (см. фото).

Соединив вершины фигуры через одну, можно получить правильный треугольник, а соответственно фигуру можно поделить на 3 равные части, а соединив все вершины и проведя через них диагонали можно разделить фигуру на 6 частей.

Деление на 4 и 8 частей

Если окружность необходимо поделить на 4 равные части, прежде всего, необходимо начертить диаметр фигуры. Это позволит получить сразу две из нужных четырех точек. Далее нужно взять циркуль, растянуть его ножки по диаметру, после чего одну из них оставить на одном из концов диаметра, а другой сделать засечки за пределами круга снизу и сверху (см. фото).

То же необходимо сделать и для другого конца диаметра. После этого полученные за пределами круга точки соединяются при помощи линейки и карандаша. Полученная линия будет вторым диаметром, который будет идти четко перпендикулярно первому, в результате чего фигура будет поделена на 4 части. Для того чтобы получить, например, 8 равных частей, полученные прямые углы можно разделить пополам и провести через них диагонали.

Для деления окружности пополам достаточно провести любой еедиаметр. Два взаимно перпендикулярных диаметра разделят окружность на четыре равные части (рисунок 28, а).Разделив каждую четвертую часть пополам, получают восьмые части, а при дальнейшем делении – шестнадцатые, тридцать вторые части и т. д. (рисунок 28, б).Если соединить прямымиточки деления, то можно получить стороны правильного вписанного квадрата(а 4 ), восьмиугольника (а 8 ) и т. д. (рисунок 28, в).

Рисунок 28

Деление окружности на 3, 6, 12 и т, д. равных частей, а также построение соответствующих правильных вписанных многоугольников осуществляют следующим образом. В окружности проводят два взаимно перпендикулярных диаметра 1–2 и 3–4 (рисунок 29 а). Из точек 1 и 2 как из центров описывают дуги радиусом окружности R до пересечения с ней в точках А, В, С и D . Точки A , B , 1, С, D и 2 делят окружность на шесть равных частей. Эти же точки, взятые через одну, разделят окружность на три равные части (рисунок 29, б). Для деления окружности на 12 равных частей описывают еще две дуги радиусом окружности из точек 3 и 4 (рисунок 29, в).

Рисунок 29

Построить правильные вписанные треугольник, шестиугольник и т. д. можно также с помощью линейки и угольника в 30 и 60°. На рисунке 30 приведено подобное построение для вписанного треугольника.

Рисунок 30

Деление окружности на семь равных частей и построение правильного вписанного семиугольника (рисунок 31) выполняют с помощью половины стороны вписанного треугольника, приблизительно равной стороне вписанного семиугольника.

Рисунок 31

Для деления окружности на пять или десятьравных частей проводят два взаимно перпендикулярных диаметра (рисунок 32, а). Радиус OA делят пополам и, получив точку В , описывают из нее дугу радиусом R=BC до пересечения ее в точке D с горизонтальным диаметром. Расстояние между точками C и D равно длине стороны правильного вписанного пятиугольника (а 5 ), а отрезок OD равен длине стороны правильного вписанного десятиугольника (а 10 ). Деление окружности на пять и десять равных частей, а также построение вписанных правильных пятиугольника и десятиугольника показаны на рисунке 32, б. Примером использования деления окружности на пять частей является пятиконечная звезда (рисунок 32, в).

Рисунок 32

На рисунке 33 приведен общий способ приближенного деления окружности на равные части . Пусть требуется разделить окружность на девять равных частей. В окружности проводят два взаимно перпендикулярных диаметра и вертикальный диаметр AB делят на девять равных частей с помощью вспомогательной прямой (рисунок 33, а). Из точки B описывают дугу радиусом R = AB, и на пересечении ее с продолжением горизонтального диаметра получают точки С и D . Из точек C и D через четные или нечетные точки деления диаметра AB проводят лучи. Точки пересечения лучей с окружностью разделят ее на девять равных частей (рисунок 33, б).

Деление окружности на четыре равные части и построение правильного вписанного четырехугольника (рис.6).

Две взаимно перпендикулярные центровые линии делят окружность на четыре равные части. Соединив точки пересечения этих линий с окружностью прямыми, получают правильный вписанный четырехугольник.

Деление окружности на восемь равных частей и построение правильного вписанного восьмиугольника (рис.7).

Деление окружности на восемь равных частей производится с помощью циркуля следующим образом.

Из точек 1 и 3 (точки пересечения центровых линий с окружностью) произвольным радиусом R проводят дуги до взаимного пересечения, тем же радиусом из точки 5 делают засечку на дуге проведенной из точки 3.

Через точки пересечения засечек и центр окружности проводят прямые линии до пересечения с окружностью в точках 2, 4, 6, 8.

Если полученные восемь точек соединить последовательно прямыми линиями, то получится правильный вписанный восьмиугольник.

Деление окружности на три равные части и построение правильного вписанного треугольника (рис.8).

Вариант 1.

При делении окружности циркулем на три равные части из любой точки окружности, например точки А пересечения центровых линий с окружностью, проводят дугу радиусом R, равным радиусу окружности, получают точки 2 и 3. Третья точка деления (точка 1) будет находится на противоположном конце диаметра, проходящего через точку А. последовательно соединив точки 1, 2 и 3, получают правильный вписанный треугольник.

Вариант 2.

При построении правильного вписанного треугольника, если задана одна из его вершин, например точка 1, находят точку А. Для этого, через заданную точку проводят диаметр (рис.8). Точка А будет находится на противоположном конце этого диаметра. Затем проводят дугу радиусом R, равным радиусу данной окружности, получают точки 2 и 3.

Деление окружности на шесть равных частей и построение правильного вписанного шестиугольника (рис.9).

При делении окружности на шесть равных частей с помощью циркуля из двух концов одного диаметра радиусом, равным радиусу данной окружности, проводят дуги до пересечения с окружностью в точках 2, 6 и 3, 5. Последовательно соединив полученные точки, получают правильный вписанный шестиугольник.

Деление окружности на двенадцать равных частей и построение правильного вписанного двенадцатиугольника (рис.10).

При делении окружности циркулем из четырех концов двух взаимно перпендикулярных диаметров окружности проводят радиусом, равным радиусу данной окружности, дуги до пересечения с окружностью (рис.10). Соединив последовательно полученные точки пересечения получают правильный вписанный двенадцатиугольник.

Деление окружности на пять равных частей и построение правильного вписанного пятиугольника (рис.11).

При делении окружности циркулем половину любого диаметра (радиуса) делят пополам, получают точку А. Из точки А, как из центра, проводят дугу радиусом, равным расстоянию от точки А до точки 1, до пересечения со второй половиной этого диаметра в точке В. Отрезок 1В равен хорде стягивающей дугу, длина которой равна 1/5 длины окружности. Делая засечки на окружности радиусом R1, равным отрезку 1В, делят окружность на пять равных частей. Начальную точку А выбирают в зависимости от расположения пятиугольника.

Из точки 1 строят точки 2 и 5, затем из точки 2 строят точку 3, а из точки 5 строят точку 4. Расстояние от точки 3 до точки 4 проверяют циркулем; если расстояние между точками 3 и 4 равно отрезку 1В, то построения были выполнены точно.

Нельзя выполнять засечки последовательно, в одну сторону, так как происходит накопление погрешностей измерения и последняя сторона пятиугольника получается перекошенной. Последовательно соединив найденные точки, получают правильный вписанный пятиугольник.

Деление окружности на десять равных частей и построение правильного вписанного десятиугольника (рис.12).

Деление окружности на десять равных частей выполняют аналогично делению окружности на пять равных частей (рис. 11), но сначала делят окружность на пять равных частей, начиная построения из точки 1, а затем из точки 6, находящейся на противоположном конце диаметра. Соединив последовательно все точки, получают правильный вписанный десятиугольник.

Деление окружности на семь равных частей и построение правильного вписанного семиугольника (рис.13).

Из любой точки окружности, например точки А, радиусом заданной окружности проводят дугу до пересечения с окружностью в точках B и D прямой.

Половина полученного отрезка (в данном случае отрезок ВС) будет равен хорде, которая стягивает дугу, составляющую 1/7 длины окружности. Радиусом, равным отрезку ВС, делают засечки на окружности в последовательности, показанной при построении правильного пятиугольника. Соединив последовательно все точки, получают правильный вписанный семиугольник.



Деление окружности на четырнадцать равных частей и построение правильного вписанного четырнадцатиугольника (рис.14).

Деление окружности на четырнадцать равных частей выполняют аналогично делению окружности на семь равных частей (рис.13), но сначала делят окружность на семь равных частей, начиная построения из точки 1, а затем из точки 8, находящейся на противоположном конце диаметра. Соединив последовательно все точки, получают правильный вписанный четырнадцатиугольник.